The proteasome inhibitor, bortezomib, has been demonstrated to sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Natural killer (NK) cells represent poten...The proteasome inhibitor, bortezomib, has been demonstrated to sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Natural killer (NK) cells represent potent antitumor effector cells. They also express TRAIL. Therefore, we investigated whether bortezomib could sensitize tumor cells to NK cell-mediated killing, and have the same effect in human prostate cancer cell lines (LNCaP and DU145). We found that bortezomib strongly inhibits proliferation in both cell lines. Furthermore, compared with LNCaP cells, DU145 cells are more sensitive to bortezomib-induced apoptosis. However, bortezomib is unable to sensitize these two cell lines to NK cell-mediated killing in short-term assays. In long-term assays, we found that killing mediated by activated NK cells following bortezomib treatment leads to greater antitumor effects than either treatment alone. In addition, treatment with bortezomib causes these cells to upregulate apoptosis-related mRNA as well as death receptors and downregulate the major histocompatibility class (MHC)-I molecule on the cell surface of DU145 cells. In contrast, LNCaP cells are not sensitized by this treatment. Death receptors and the MHC-I molecule did not change in this cell line. These data suggest that bortezomib can be used to sensitize prostate cancer cells to NK cell-mediated killing and improve current cancer therapies. This theral)eutic stratelzv may be more effective in I)atients with androeen-insensitive orostate cancer.展开更多
文摘The proteasome inhibitor, bortezomib, has been demonstrated to sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Natural killer (NK) cells represent potent antitumor effector cells. They also express TRAIL. Therefore, we investigated whether bortezomib could sensitize tumor cells to NK cell-mediated killing, and have the same effect in human prostate cancer cell lines (LNCaP and DU145). We found that bortezomib strongly inhibits proliferation in both cell lines. Furthermore, compared with LNCaP cells, DU145 cells are more sensitive to bortezomib-induced apoptosis. However, bortezomib is unable to sensitize these two cell lines to NK cell-mediated killing in short-term assays. In long-term assays, we found that killing mediated by activated NK cells following bortezomib treatment leads to greater antitumor effects than either treatment alone. In addition, treatment with bortezomib causes these cells to upregulate apoptosis-related mRNA as well as death receptors and downregulate the major histocompatibility class (MHC)-I molecule on the cell surface of DU145 cells. In contrast, LNCaP cells are not sensitized by this treatment. Death receptors and the MHC-I molecule did not change in this cell line. These data suggest that bortezomib can be used to sensitize prostate cancer cells to NK cell-mediated killing and improve current cancer therapies. This theral)eutic stratelzv may be more effective in I)atients with androeen-insensitive orostate cancer.