期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Effects of Blending Ratio on Combustion and NO Emission Characteristics during Co-Firing of Semi-Char and Lignite in a 350 kW Pulverized Coal-Fired Furnace
1
作者 YAN Yonghong PENG Zhengkang +2 位作者 SUN Liutao CHEN Dengke SUN Rui 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期1292-1305,共14页
The influence of the blending ratio of pyrolyzed semi-char(SC)on the ignition,NO emission and burnout characteristics of lignite co-fired with SC was investigated in a 350 kW fuel-rich/lean combustion furnace.The flam... The influence of the blending ratio of pyrolyzed semi-char(SC)on the ignition,NO emission and burnout characteristics of lignite co-fired with SC was investigated in a 350 kW fuel-rich/lean combustion furnace.The flame temperature and concentrations of gaseous species including O_(2),CO,and NO,were measured in detail.The results indicated that the ignition characteristics of the blended fuel worsened with increasing SC blending ratio,such as an elongated ignition standoff distance.The addition of SC to lignite delayed the appearance of a stable flame boundary,and the stable combustion zone moved down,but the final combustion stability was gradually strengthened in the later combustion stage.NO emission concentration at the primary combustion zone(PCZ)outlet was the lowest at 472.6 mg/m^(3)@6%O_(2)when the SC blending ratio was 25%.The combustion zone and reducing zone areas in PCZ were defined to evaluate the NO reduction characteristics,and quantitative analysis using a multiple linear regression model showed that heterogeneous reduction was more important than homogeneous reduction in lowering NO emissions.The Raman spectrum of the char sample indicated that the addition of lignite promoted the formation of small aromatic rings in the early ignition stage,corresponding to a higher char reactivity.The burnout ratio of pure lignite was maximal and was decreased by increasing the SC blending ratio.Synthetically,considering the ignition standoff distance,NO emission,and burnout ratio,the optimum SC blending ratio was estimated to be 25%. 展开更多
关键词 CO-FIRING blending ratio ignition characteristics no emission burnout ratio
原文传递
Experimental Study on Oxy-Fuel Combustion and NO Emission in a Spouted-Fluidized Bed with under Bed Feeding 被引量:3
2
作者 XU Mingxin WU Yachang +3 位作者 WU Haibo OUYANG Haodong ZHENG Shu LU Qiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1132-1140,共9页
The spouted-fluidized bed is modified from the classical fluidized bed device,which combines the features of spouted and fluidized beds.In the present work,the performance of oxy-fuel spouted-fluidized bed combustion ... The spouted-fluidized bed is modified from the classical fluidized bed device,which combines the features of spouted and fluidized beds.In the present work,the performance of oxy-fuel spouted-fluidized bed combustion with under bed feeding and its effect on NO emission were systematically investigated.The results revealed that it was feasible to use a spouted-fluidized bed combustor for oxy-fuel combustion with real flue gas recycling.The transition from air combustion to oxy-fuel combustion was smooth and the concentration of CO_(2) in the flue gas could be as high as 90%steadily(dry base).Increasing the reaction temperature exhibited a negative effect on NO emission.Compared with that under the shallow bed,the concentration of NO in the flue gas was lower under the deep bed condition.Besides,the utilization of crush particles was favorable for suppressing NO emission because of the promoted mixing between coal particles and solid bed materials.Furthermore,the addition of limestone was proven to undesirably increase the NO emission during oxy-fuel spouted-fluidized bed combustion. 展开更多
关键词 spouted-fluidized bed oxy-fuel combustion TRANSITION no emission bed materials LIMESTONE
原文传递
Effect of metallurgical dust on NO emissions during coal combustion process 被引量:2
3
作者 Zhi-fang Gao Hong-ming Long +2 位作者 Tie-jun Chun Zhao-jin Wu Zheng-wei Yu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第1期19-27,共9页
NO emissions from coal combustion are receiving significant attention in recent years. As a solid waste generated from metallurgical industry, metallurgical dust (MD) contains a large amount of metal oxides, such as... NO emissions from coal combustion are receiving significant attention in recent years. As a solid waste generated from metallurgical industry, metallurgical dust (MD) contains a large amount of metal oxides, such as Fe2O3, CaO, SiO2 and Al2O3, as well as other rare metal oxides. The influence of MD on the NO emissions and the mechanism of the coal com- bustion systems were analyzed. The results show that the peak values of NO emission decrease with the increase in MD mass percent, and the curve of NO emission can be divided into two stages including rapid generation (400-600 ℃) and slow release (800-900 ℃). The reduction of NO is significantly affected by temperature, volatile components, 02 and CO. CO has a significant catalytic action which can deoxidize NO to N2. The results obtained by X-ray diffraction and scanning electron microscopy indicate that multiple components in MD, such as FegTiO15, Fe2O3 and TiO2, can react with NO to produce TiN. Besides, the alkali metals in MD, such as Na, K and Ca, may catalyze NO precursor to inhibit NO emission. These results indicate that MD is cheap and highly efficient in controlling NO emissions during coal combustion processes. 展开更多
关键词 Metallurgical dust no emission Reaction mechanism Coal combustion
原文传递
Inhibition of NO emission by adding antioxidant mixture in Jatropha biodiesel on the performance and emission characteristics of a C.I. engine
4
作者 A. PRABU R. B. ANAND 《Frontiers in Energy》 SCIE CSCD 2015年第2期238-245,共8页
In this paper, the effect of adding an antiox- idant mixture in Jatropha biodiesel as fuel, in a single cylinder, direct injection compression ignition engine was experimentally investigated and the level of pollutant... In this paper, the effect of adding an antiox- idant mixture in Jatropha biodiesel as fuel, in a single cylinder, direct injection compression ignition engine was experimentally investigated and the level of pollutants in the exhaust and performance characteristics of the engine were analyzed. Nine test fuels were prepared with three antioxidants, namely, Suecinimide (C4H5NO2), N,N-dimethyl-p-phenylenediamine-dihydrochloride (C8H14C12N2), and N-phenyl-p-phenylenediamine (C6H5NHC6H4NH2) added to neat biodiesel at 500 parts per million (ppm), 1000ppm and 2000ppm and the observed experimental results were compared with those of neat biodiese! and neat diesel as base fuels. The comparison showed that NO emission was reduced drastically for the test fuels with the antioxidant addition of 2000ppm. The maximum reduction of 10% of NO emission was observed for the antioxidant mixture in neat biodiesel, with a slight increase in unburned HC, CO and smoke opacity. In addition, the obtained experimental results reveal that the addition of two antioxidants as mixture in neat biodiesel caused improved NO emission reduction for all test fuels. 展开更多
关键词 no emission ANTIOXIDANTS Succinimide N N-dimethyl-p-phenylenediamine-dihydrochloride N-phenyl-p-phenylenediamine
原文传递
A numerical study of accelerated moderate or intense low-oxygen dilution(MILD)combustion stability for methane in a lab-scale furnace by off-stoichiometric combustion technology 被引量:1
5
作者 Mengqian Xie Fangqin Dai Yaojie Tu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期108-118,共11页
Moderate or intense lowoxygen dilution(MILD)combustion has become a promising lowNOX emission technology,while the delayed mixing of reactants and slower oxidation rate could potentially cause ignition instability in ... Moderate or intense lowoxygen dilution(MILD)combustion has become a promising lowNOX emission technology,while the delayed mixing of reactants and slower oxidation rate could potentially cause ignition instability in some scenarios.This paper proposes a new idea for enhancing the ignition stability for methane MILD combustion by combining with offstoichiometric combustion(OSC),and its performances have been numerically assessed through a comparison against the original MILD combustion burner.The results reveal although nonpremixed pattern has the lowest NO emission,it suffers from a larger liftoff distance,thus less ignition stability.Contrarily,both partiallypremixed and fully premixed patterns exhibit excellent ignition stability.Among the considered OSC conditions,the pattern of Inner ultrarich and Outer lean produces the lowest NO emission while maintains a high ignition stability.Furthermore,the enhancement of the combustion stability by implementing OSC to the original MILD combustion burner is shown by comparing the operational range of furnace wall temperature(Tf),CO and NO emissions,as well as the evolution of chemical flame.The comparison reveals that OSC can extend the lowest operational Tf from 900 K to 800 K.More importantly,OSC can significantly improve the ignition stability in the whole range of Tf as compared to the original MILD combustion burner. 展开更多
关键词 MILD combustion Off-stoichiometric combustion no emission Ignition instability Burner design
下载PDF
Experimental and Modelling Study on Emission of Volatile Nitrogen Derived NO during Pressured Oxy-fuel Combustion under Wet Flue Gas Environment
6
作者 ZAN Haifeng CHEN Xiaoping +4 位作者 PAN Suyang GENG Pengfei LIU Daoyin MA Jiliang LIANG Cai 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第5期1750-1757,共8页
Pressurised oxy-fuel combustion(POFC)is a clean and efficient combustion technology with great potential.Due to the recycling of flue gas,the concentration of steam in the flue gas is higher than that of conventional ... Pressurised oxy-fuel combustion(POFC)is a clean and efficient combustion technology with great potential.Due to the recycling of flue gas,the concentration of steam in the flue gas is higher than that of conventional combustion,which enriches the free radical pool in the flue gas and thus affects the emission of gaseous pollutants.Therefore,further research into the effect of high steam concentrations on NO_(x)emission mechanisms in POFC is necessary.In this work,a fixed-bed reactor was used to conduct combustion experiments of volatiles and combined with chemical kinetic models to study the NO release characteristics for different pressures and steam concentrations in an O_(2)/CO_(2)atmosphere at 800℃/900℃temperature.The results of the study indicated that the volatile nitrogen comes from the pyrolysis of part of pyrrole,pyridine,and all quaternary nitrogen in coal.The increase in temperature promoted the formation of NO during combustion.Higher pressure affects the main reaction pathway for NO formation,promoting NO consumption by HCCO and C_(2)O groups while enhancing the overall NO reduction.Steam promoted NO consumption by NCO.In addition,steam increased the amount of H/OH groups during the reaction,which affected both NO formation and consumption.However,from the overall effect,the steam still inhibits the emission of NO. 展开更多
关键词 pressurized oxy-fuel combustion STEAM volatile nitrogen no emission
原文传递
Effect of flue gas recirculation technology on soot and NO formation in the biomass pyrolysis-combustion system
7
作者 YANG Yu ZHENG Shu +2 位作者 HE YuZhen LIU Hao LU Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第4期945-955,共11页
Pyrolysis of biomass followed by combustion of pyrolytic vapors to replace fossil fuels is an economic low-carbon solution.However,the polycyclic aromatic hydrocarbons and N-containing species in biomass pyrolysis vap... Pyrolysis of biomass followed by combustion of pyrolytic vapors to replace fossil fuels is an economic low-carbon solution.However,the polycyclic aromatic hydrocarbons and N-containing species in biomass pyrolysis vapors result in the soot and NO emissions.The flue gas recirculation(FGR)technology,having the potential to reduce the soot and NO emissions,was introduced to the biomass pyrolysis-combustion system.In addition,it was numerically studied by simulating the biomass pyrolysis vapors based co-flow diffusion flames with CO_(2)addition.Both the experimental and simulated results showed that the FGR had significant suppression effects on the soot formation.When the FGR ratio(i.e.,CO_(2)addition ratio)increased from 0%to 15%,the experimental and simulated soot volume fraction respectively decreased by 32%and 21%,which verified the models used in this study.The decrease in OH concentration caused by the CO_(2)addition was responsible for the decrease in the decomposition rate of A2(A2+OH=A2–+H_(2)O).Hence,more benzo(ghi)fluoranthene(BGHIF)was generated through A1C_(2)H–+A2→BGHIF+H_(2)+H,leading to the increase in inception rate.The decrease in benzo(a)pyrene(BAPYR)concentration was the major factor in the decrease in soot condensation rate.Moreover,the decrease in the C_(2)H_(2) and OH concentrations was responsible for the decrease in the HACA surface growth rate.Furthermore,the simulated results showed that the NO concentration decreased by 0.4%when the content of CO_(2)was increased by 1 vol.%.The decrease in OH concentration suppressed the NO formation via decreasing reaction rates of N+OH=NO+H and HNO+OH=NO+H_(2)O and enhanced the NO consumption via increasing reaction rate of HO_(2)+NO=NO_(2)+OH. 展开更多
关键词 biomass pyrolysis vapors biomass pyrolysis-combustion system flue gas recirculation no emission soot reduction
原文传递
Experimental and numerical study of combustion characteristics of ammonia-hydrogen-air swirling flame with/without secondary air injection
8
作者 Chunyu LIU Chenhu GAO +4 位作者 Yue HUANG Hua JIN Dan ZHAO Wenjiang XU Yancheng YOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期243-255,共13页
Ammonia (NH_(3)) is currently considered to be a potential carbon-free alternative fuel,and its large-scale use as such would certainly decrease greenhouse gas emissions and meet increasingly stringent emission requir... Ammonia (NH_(3)) is currently considered to be a potential carbon-free alternative fuel,and its large-scale use as such would certainly decrease greenhouse gas emissions and meet increasingly stringent emission requirements.Although the low flame propagation speed and high NO production of NH_(3) hinder its direct application as a renewable fuel,co-combustion of NH_(3)–H_(2)is an effective way to overcome these challenges.In this study,the combustion characteristics of NH_(3)–H_(2)swirling flames under different equivalence ratios and H_2blending ratios conditions are both numerically and experimentally investigated.Numerically,the One-Dimensional (1D) laminar flame computation presents a comparison base and the Three-Dimensional (3D) numerical simulation yields detailed flame property distributions.Experimentally,the high-speed camera takes instantaneous swirl flame images and the gas analyzer measures the NO emission at the exit plane of the flame chamber.Qualitative and quantitative analysis is performed on the flame structure and NO emission for a series of NH_(3)–H_(2)swirl flames.The variation trends of the NO emission calculated using different techniques agree very well.The quantitative results show that the NO emissions are much higher at lean equivalence ratios than those at rich equivalence ratios,and such difference is closely related to the combustion flame structure.Moreover,it is shown that the utilization of secondary air injection can achieve a significant reduction in NO emissions at the exit of the combustion chamber at equivalence ratios less than or equal to 0.9. 展开更多
关键词 Ammonia combustion Swirling flow no emission characteristics Secondary combustion Chemical reaction mechanism
原文传递
Characteristics of Nitric-Oxide Emissions from Traditional Flame and MILD Combustion Operating in a Laboratory-Scale Furnace 被引量:2
9
作者 SHU Ziyun WANG Feifei +3 位作者 DAI Chong SI Jicang WANG Bo MI Jianchun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期868-883,共16页
This study investigated the formation and emission characteristics of nitric oxide(NO) from flameless MILD(moderate or intensive low-oxygen dilution) combustion(MILDC) versus traditional visible-flame combustion(TC) i... This study investigated the formation and emission characteristics of nitric oxide(NO) from flameless MILD(moderate or intensive low-oxygen dilution) combustion(MILDC) versus traditional visible-flame combustion(TC) in a 30-k W furnace. Both combustion processes were experimentally operated successively in the same furnace, burning natural gas at a fixed rate of 19 k W and the equivalence ratio of 0.86. Numerical simulations of TC and MILDC were carried out to explain their distinction in the measured furnace temperature and exhaust NO emissions. Present measurements of the NO emission(XNO) versus a varying furnace wall temperature(Tw) have revealed, at the first time, that the relationship of XNO ~ Tw was exponential in both TC and MILDC. By analyzing the simulated results, the average temperature over the reaction zone was identified to be the common characteristic temperature for scaling NO emissions of both cases. Moreover, relative to TC, MILDC had a fairly uniform temperature distribution and low peak temperature, thus reducing the NO emission by over 90%. The thermal-NO formation was found to contribute more than 70%-80% to the total XNO from TC while the N2O-intermediate route dominated the NO emission from MILDC. 展开更多
关键词 MILD(moderate or intensive low-oxygen dilution)combustion traditional combustion no emission
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部