The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathway...The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.展开更多
Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped(x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface m...Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped(x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface morphology, leakage current, ferroelectric properties, and optical properties of BiFeO3-based thin films were investigated. The substitution of Nd^3+ ions for the Bi^3+ site converts the structure from rhombohedral to coexisting tetragonal and orthorhombic. Nd doping improves the crystallinity of BiFeO3 thin films. The leakage current of Nd-doped BiFeO3 decreases by two to three orders of magnitude compared with that of pure BiFeO3. Among the samples, 15% Nd-doped BiFeO3 exhibits the strongest ferroelectric polarization of 17.96 μC/cm^2. Furthermore, the absorption edges of Bi1-xNdxFeO3 thin films show a slight red-shift after Nd doping.展开更多
Surface leakage currents of A1GaN/GaN high electron mobility transistors are investigated by utilizing a circular double-gate structure to eliminate the influence of mesa leakage current. Different mechanisms are foun...Surface leakage currents of A1GaN/GaN high electron mobility transistors are investigated by utilizing a circular double-gate structure to eliminate the influence of mesa leakage current. Different mechanisms are found under various passivation conditions. The mechanism of the surface leakage current with AI2 03 passivation follows the two-dimensional variable range hopping model, while the mechanism of the surface leakage current with SiN passivation follows the Frenkel-Poole trap assisted emission. Two trap levels are found in the trap-assisted emission. One trap level has a barrier height of 0.22eV for the high electric field, and the other trap level has a barrier height of 0.12eV for the low electric field.展开更多
基金supported by the Chinese Academy of Sciencesthe State Key Project of Fundamental Research of Chinathe Natural Science Foundation of Ningbo,China
文摘The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.
基金Funded by the Guangxi Experiment Center of Information Science,China(No:YB1416)
文摘Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped(x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface morphology, leakage current, ferroelectric properties, and optical properties of BiFeO3-based thin films were investigated. The substitution of Nd^3+ ions for the Bi^3+ site converts the structure from rhombohedral to coexisting tetragonal and orthorhombic. Nd doping improves the crystallinity of BiFeO3 thin films. The leakage current of Nd-doped BiFeO3 decreases by two to three orders of magnitude compared with that of pure BiFeO3. Among the samples, 15% Nd-doped BiFeO3 exhibits the strongest ferroelectric polarization of 17.96 μC/cm^2. Furthermore, the absorption edges of Bi1-xNdxFeO3 thin films show a slight red-shift after Nd doping.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2014AA032602the National Natural Science Foundation of China under Grant Nos 61474115 and 61501421
文摘Surface leakage currents of A1GaN/GaN high electron mobility transistors are investigated by utilizing a circular double-gate structure to eliminate the influence of mesa leakage current. Different mechanisms are found under various passivation conditions. The mechanism of the surface leakage current with AI2 03 passivation follows the two-dimensional variable range hopping model, while the mechanism of the surface leakage current with SiN passivation follows the Frenkel-Poole trap assisted emission. Two trap levels are found in the trap-assisted emission. One trap level has a barrier height of 0.22eV for the high electric field, and the other trap level has a barrier height of 0.12eV for the low electric field.