Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2...Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.展开更多
Background: Leprosy is known to cause disability that leads to severe outcomes like stigma, discrimination, mental health problems and participation restriction. Furthermore, in cases of infectious leprosy, longer del...Background: Leprosy is known to cause disability that leads to severe outcomes like stigma, discrimination, mental health problems and participation restriction. Furthermore, in cases of infectious leprosy, longer delays increase the risk for the spread of the disease. Despite being preventable and curable, a significant proportion of new leprosy patients (39%) in 2019 had grade 2 (Described as Visible disability) at the time of diagnosis signifying late presentation. The aim of this study was to describe patient journeys from first symptoms suggestive of leprosy to a diagnosis and individual and community level factors associated with health seeking behavior of leprosy patients. Methods: This was a cross-sectional explorative study implemented in Kasese, Mayuge and Yumbe districts .A structured questionnaire was used to collect quantitative data. Qualitative assessment included patients, family members, health workers, voluntary health teams and the district health team. Descriptive statistics were presented in terms of percentages, frequency tables, pie Charts and graphs for easy interpretation and discussion. Results: The results indicate that 53% of the respondents identified as female. The median age of the respondents being 34 years, with a range of 1 to 76 years (Mean: 44.7, Mode: 65, Standard-Deviation: 19.6, Kurtosis: 0.6). The most common first symptom noticed by respondents was skin lesions (65%) followed by deformities (18%) (P value = 0.05%) occurring mostly in the feet (P-value = 0.48). Majority (52%) of the patients had taken more than 24 months (SD 18.72 OR 2.75) for a diagnosis to be made with a maximum delay of over 60 months. The most common cause of delay in seeking health care was lack of knowledge on leprosy (P value=Conclusions: There was a delay of 2 years in seeking health care for the majority of the patients. Key barriers to early diagnosis were lack of knowledge and infrastructure. Community sensitization and strengthening capacity building are needed to achieve early diagnosis of leprosy and proper management.展开更多
BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM T...BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention.展开更多
Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-tran...Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-translocation-associated (ZFTA, ST-EPN-ZFTA), exhibits the expression of a fusion protein comprising ZFTA and v-rel reticuloendotheliosis viral oncogene homolog A (RELA), an effector transcription factor of the nuclear factor-kappa B (NF-κB) pathway (ZFTA-RELA). The expression of ZFTA-RELA results in the hyperactivation of the oncogenic NF-κB signaling pathway, which ultimately leads to the development of ST-EPN-ZFTA. To identify inhibitors of the NF-κB signaling pathway activated by the expression of ZFTA-RELA, we used a doxycycline-inducible ZFTA-RELA-expressing NF-κB reporter cell line and found that extracts of the fungus Neosartorya spinosa IFM 47025 exhibited NF-κB inhibitory activity. We identified eight compounds [aszonapyrone A (2), sartorypyrone A (3), epiheveadride (4), acetylaszonalenin (5), (R)-benzodiazepinedione (6), aszonalenin (7), sartorypyrone E (8) and (Z, Z)-N,N’-(1,2-bis[(4-methoxyphenyl)methylene]-1,2-ethanediyl)bis-formamide (9)] from N. spinosa IFM 47025 culture extract using a variety of chromatographic techniques. The structures of these compounds were identified through the analysis of various instrumental data (1D, 2D-NMR, MS, and optical rotation). The NF-κB responsive reporter assay indicated that compounds 2, 3, 5, 7, and 9 exhibited inhibitory activity. We further evaluated the inhibitory activity of these compounds against the expression of endogenous NF-κB responsive genes (CCND1, L1CAM, ICAM1, and TNF) and found that compound 2 showed significant inhibitory activity. Further studies are required to elucidate the mechanism of action of compound 2, which may serve as a lead compound for the development of a novel therapy for ST-EPN-ZFTA.展开更多
BACKGROUND The ubiquitin-proteasome pathway(UPP)has been proven to play important roles in cancer.AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver ca...BACKGROUND The ubiquitin-proteasome pathway(UPP)has been proven to play important roles in cancer.AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes.METHODS In this study,UPP-related E1,E2,E3,deubiquitylating enzyme,and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based RESULTS Five genes(including autophagy related 10,proteasome 20S subunit alpha 8,proteasome 20S subunit beta 2,ubiquitin specific peptidase 17 like family member 2,and ubiquitin specific peptidase 8)were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer.Among training,validation,and Gene Expression Omnibus sets,the overall survival differed significantly between the high-risk and low-risk groups.The expression of the five genes was significantly associated with immunocyte infiltration,tumor stage,and postoperative recurrence.A total of 111 differentially expressed genes(DEGs)were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways.Cell division cycle 20,Kelch repeat and BTB domain containing 11,and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival.CONCLUSION We have constructed a prognosis predictive model in patients with liver cancer,which contains five genes that associate with immunocyte infiltration,tumor stage,and postoperative recurrence.展开更多
Background Mastitis is an inflammatory disease of the mammary gland that has serious economic impacts on the dairy industry and endangers food safety.Our previous study found that the body has a gut/rumen-mammary glan...Background Mastitis is an inflammatory disease of the mammary gland that has serious economic impacts on the dairy industry and endangers food safety.Our previous study found that the body has a gut/rumen-mammary gland axis and that disturbance of the gut/rumen microbiota could result in‘gastroenterogenic mastitis'.However,the mechanism has not been fully clarified.Recently,we found that long-term feeding of a high-concentrate diet induced mastitis in dairy cows,and the abundance of Stenotrophomonas maltophilia(S.maltophilia)was significantly increased in both the rumen and milk microbiota.Accordingly,we hypothesized that‘gastroenterogenic mastitis'can be induced by the migration of endogenous gut bacteria to the mammary gland.Therefore,this study investigated the mechanism by which enterogenic S.maltophilia induces mastitis.Results First,S.maltophilia was labelled with superfolder GFP and administered to mice via gavage.The results showed that treatment with S.maltophilia promoted the occurrence of mastitis and increased the permeability of the blood-milk barrier,leading to intestinal inflammation and intestinal leakage.Furthermore,tracking of ingested S.maltophilia revealed that S.maltophilia could migrate from the gut to the mammary gland and induce mastitis.Subsequently,mammary gland transcriptome analysis showed that the calcium and AMPK signalling pathways were significantly upregulated in mice treated with S.maltophilia.Then,using mouse mammary epithelial cells(MMECs),we verified that S.maltophilia induces mastitis through activation of the calcium-ROS-AMPK-mTOR-autophagy pathway.Conclusions In conclusion,the results showed that enterogenic S.maltophilia could migrate from the gut to the mammary gland via the gut-mammary axis and activate the calcium-ROS-AMPK-mTOR-autophagy pathway to induce mastitis.Targeting the gut-mammary gland axis may also be an effective method to treat mastitis.展开更多
Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our...Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells.展开更多
BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus...BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus(T2DM)in clinical application.Non-alcoholic fatty liver disease(NAFLD)is frequently diagnosed in patients with T2DM.However,the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation.AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro.METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model.Subsequently,experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours.C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD,and then treated with the different concentrations of FLHZF for 10 weeks.RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro.Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress,regulating the AMPKα/SREBP-1C signaling pathway,activating autophagy,and inhibiting hepatocyte apoptosis.CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species,autophagy,apoptosis,and lipid synthesis signaling pathways,indicating its potential for clinical application in NAFLD.展开更多
Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus ...Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus on the impacts of exercise on cancer.Methods:We utilized a multi-faceted approach,including volcano plots,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,Venn diagrams,protein-protein interaction networks,Kaplan-Meier survival analysis,Gene Set Variety Analysis,and single-cell transcriptomic analysis.Furthermore,we profiled tumor mutational scenes,assessed the prognostic value of immune-related features,and conducted a comprehensive examination of genetic variations and their impact on tumor mutational burden across different cancer types.Multidimensional genomic interactions and methylation elements were also investigated.Using real-time quantitative PCR and immunofluorescence staining,the effects of B-cell lymphoma 2(BCL2)silencing on TNF-αand caspase-3 gene expression were evaluated.Results:Our study identified a noteworthy number of differentially expressed genes in endometrial carcinoma with potential links to athletic performance traits.BCL2 expression levels were found to be associated with survival outcomes,and its changeability across cancers was related to immune cell infiltration and immune checkpoint gene expression.Single-cell investigations uncovered cellular complexity within tumor microenvironments and critical biological pathways in BCL2-overexpressing cells.The expression flow and mutational effect of BCL2 in endometrial carcinoma were characterized,and the prognostic implications of immune-related features were assessed.Hereditary variations,including copy number variations and their relationship with gene expression and tumor mutational burden,were investigated.Multidimensional genomic transaction highlighted the essential role of regulatory genes in cancer pathogenesis.Silencing of the BCL2 gene significantly inhibited the proliferation of HEC-108 cells and promoted apoptosis,as evidenced by decreased TNF-αgene expression and increased caspase-3 gene expression.Immunofluorescence staining further confirmed these results.Conclusion:This study gives a point-by-point understanding of the atomic intelligence and prognostic implications in endometrial carcinoma and across various other cancers.BCL2’s role as a modulatory factor within the tumor-resistant environment and its potential impact on disease prognosis and response to immunotherapy were underscored.The multidimensional genomic analysis provides insights into the complex interaction between genetic and epigenetic variables in cancer,which may shed light on future therapeutic strategies.This study indicates that silencing the BCL2 gene can significantly inhibit tumor cell proliferation and promote apoptosis through the regulation of the TNF-αand caspase-3 pathways.展开更多
Acute pancreatitis(AP)is a leading cause of gastrointestinal-related hospitalizations in the United States,resulting in 300000 admissions per year with an estimated cost of over$2.6 billion annually.The severity of AP...Acute pancreatitis(AP)is a leading cause of gastrointestinal-related hospitalizations in the United States,resulting in 300000 admissions per year with an estimated cost of over$2.6 billion annually.The severity of AP is determined by the presence of pancreatic complications and end-organ damage.While moderate/severe pancreatitis can be associated with significant morbidity and mortality,the majority of patients have a mild presentation with an uncomplicated course and mortality rate of less than 2%.Despite favorable outcomes,the majority of mild AP patients are admitted,contributing to healthcare cost and burden.In this Editorial we review the performance of an emergency department(ED)pathway for patients with mild AP at a tertiary care center with the goal of reducing hospitalizations,resource utilization,and costs after several years of implementation of the pathway.We discuss the clinical course and outcomes of mild AP patients enrolled in the pathway who were successfully discharged from the ED compared to those who were admitted to the hospital,and identify predictors of successful ED discharge to select patients who can potentially be triaged to the pathway.We conclude that by implementing innovative clinical pathways which are established and reproducible,selected AP patients can be safely discharged from the ED,reducing hospitalizations and healthcare costs,without compromising clinical outcomes.We also identify a subset of patients most likely to succeed in this pathway.展开更多
BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,ofte...BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.展开更多
Hyperuricemia is a high-risk factor for the development of gout and renal fibrosis,but the adverse effects of hyperuricemia on the liver have been seriously neglected.This research investigated the ameliorating effect...Hyperuricemia is a high-risk factor for the development of gout and renal fibrosis,but the adverse effects of hyperuricemia on the liver have been seriously neglected.This research investigated the ameliorating effect of Lacticaseibacillus rhamnosus Fmb14 on hyperuricemia induced liver dysfunction both in vitro and in vivo.Cell free extracts of high dose L.rhamnosus Fmb14 treatment reduced the death rate of HepG2 cell lines from 24.1%to 14.9%by inhibiting NLRP3 recruitment,which was mainly activated by reactive oxygen species release and mitochondrial membrane potential disorder.In purine dietary induced hyperuricemia(PDIH)mice model,liver oedema and pyroptosis were ameliorated after L.rhamnosus Fmb14 administration through downregulating the expression levels of NLRP3,caspase-1 and gasdermin-D from 1.61 to 0.86,3.15 to 1.01 and 5.63 to 2.02,respectively.L.rhamnosus Fmb14 administration restored mitochondrial inner membrane protein(MPV17)and connexin 43 from 2.83 and 0.73 to 0.80 and 0.98 respectively in PDIH mice,indicating that dysbiosis of mitochondrial membrane potential was restored in liver.Intriguingly,PDIH pyroptosis stimulates the process of apoptosis,which leads to severe leakage of hepatocytes,and both of pyroptosis and apoptosis were decreased after L.rhamnosus Fmb14 treatment.Therefore,L.rhamnosus Fmb14 is a promising biological resource to maintain homeostasis of the liver in hyperuricemia and the prevention of subsequent complications.展开更多
Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in ...Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma.展开更多
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect...Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.展开更多
AIM:To understand the molecular connectivity between the intraocular pressure(IOP)and glaucoma which will provide possible clues for biomarker candidates.METHODS:The current study uncovers the important genes connecti...AIM:To understand the molecular connectivity between the intraocular pressure(IOP)and glaucoma which will provide possible clues for biomarker candidates.METHODS:The current study uncovers the important genes connecting IOP with the core functional modules of glaucoma.An integrated analysis was performed using glaucoma and IOP microarray datasets to screen for differentially expressed genes(DEGs)in both conditions.To the selected DEGs,the protein interaction network was constructed and dissected to determine the core functional clusters of glaucoma.For the clusters,the connectivity of IOP DEGs was determined.Further,enrichment analyses were performed to assess the functional annotation and potential pathways of the crucial clusters.RESULTS:The gene expression analysis of glaucoma and IOP with normal control showed that 408 DEGs(277 glaucoma and 131 IOP genes)were discovered from two GEO datasets.The 290 DEGs of glaucoma were extended to form a network containing 1495 proteins with 9462 edges.Using ClusterONE,the network was dissected to have 12 clusters.Among them,three clusters were linked with three IOP DEGs[N-Myc and STAT Interactor(NMI),POLR3G(RNA Polymerase Ⅲ Subunit G),and APAF1-interacting protein(APIP)].In the clusters,ontology analysis revealed that RNA processing and transport,p53 class mediators resulting in cell cycle arrest,cellular response to cytokine stimulus,regulation of phosphorylation,regulation of type Ⅰ interferon production,DNA deamination,and cellular response to hypoxia were significantly enriched to be implicated in the development of glaucoma.Finally,NMI,POLR3G,and APIP may have roles that were noticed altered in glaucoma and IOP conditions.CONCLUSION:Our findings could help to discover new potential biomarkers,elucidate the underlying pathophysiology,and identify new therapeutic targets for glaucoma.展开更多
Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeu...Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair.Among the elements that lead to DDP resistance,O^(6)-methylguanine(O^(6)-MG)-DNA-methyltransferase(MGMT),a DNA-repair enzyme,performs a quintessential role.In this study,we clarify the significant involvement of MGMT in conferring DDP resistance in CRC,elucidating the underlying mechanism of the regulatory actions of MGMT.A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study,and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo.Conversely,in cancer cells,MGMT overexpression abolishes their sensitivity to DDP treatment.Mechanistically,the interaction between MGMT and cyclin dependent kinase 1(CDK1)inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1.Meanwhile,to achieve nonhomologous end joining,MGMT interacts with XRCC6 to resist chemotherapy drugs.Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation,and several Wnt inhibitors can repress drug-resistant cells.In summary,our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.展开更多
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat...Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.展开更多
In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protecti...In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protective mechanism of Calculus bovis(CB)in HCC.Liver cancer is the fourth most common cause of cancer-related deaths globally.The most prevalent kind of primary liver cancer,HCC,is typically brought on by long-term viral infections(hepatitis B and C),non-alcoholic steatohepatitis,excessive alcohol consumption,and other conditions that can cause the liver to become chronically inflamed and cirrhotic.CB is a wellknown traditional remedy in China and Japan and has been used extensively to treat a variety of diseases,such as high fever,convulsions,and stroke.Disturbances in lipid metabolism,cholesterol metabolism,bile acid metabolism,alcohol metabolism,and xenobiotic detoxification lead to fatty liver disease and liver cirrhosis.Succinate,which is a tricarboxylic acid cycle intermediate,is vital to energy production and mitochondrial metabolism.It is also thought to be a signaling molecule in metabolism and in the development and spread of liver malignancies.The Wnt/β-catenin pathway is made up of a group of proteins that are essential for both adult tissue homeostasis and embryonic development.Cancer is frequently caused by the dysregulation of the Wnt/β-catenin signaling pathway.In HCC liver carcinogenesis,Wnt/β-catenin signaling is activated by the expression of downstream target genes.Communication between the liver and the gut exists via the portal vein,biliary tract,and systemic circulation.This"gutliver axis"controls intestinal physiology.One of the main factors contributing to the development,progression,and treatment resistance of HCC is the abnormal activation of the Wnt/β-Catenin signaling pathway.Therefore,understanding this pathway is essential to treating HCC.Eleven ingredients of CB,particularly oleanolic acid,ergosterol,and ursolic acid,have anti-primary liver cancer properties.Additionally,CB is important in the treatment of primary liver cancer through pathways linked to immune system function and apoptosis.CB also inhibits the proliferation of cancer stem cells and tumor cells and controls the tumor microenvironment.In the future,clinicians may be able to recommend one of many potential new drugs from CB ingredients to treat HCC expression,development,and progress.展开更多
基金funded by the National Key Research and Development Program of China(2020YFD0900902)Zhejiang Province Public Welfare Technology Application Research Project(LGJ21C20001)Zhejiang Provincial Key Research and Development Project of China(2019C02076 and 2019C02075)。
文摘Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical.
文摘Background: Leprosy is known to cause disability that leads to severe outcomes like stigma, discrimination, mental health problems and participation restriction. Furthermore, in cases of infectious leprosy, longer delays increase the risk for the spread of the disease. Despite being preventable and curable, a significant proportion of new leprosy patients (39%) in 2019 had grade 2 (Described as Visible disability) at the time of diagnosis signifying late presentation. The aim of this study was to describe patient journeys from first symptoms suggestive of leprosy to a diagnosis and individual and community level factors associated with health seeking behavior of leprosy patients. Methods: This was a cross-sectional explorative study implemented in Kasese, Mayuge and Yumbe districts .A structured questionnaire was used to collect quantitative data. Qualitative assessment included patients, family members, health workers, voluntary health teams and the district health team. Descriptive statistics were presented in terms of percentages, frequency tables, pie Charts and graphs for easy interpretation and discussion. Results: The results indicate that 53% of the respondents identified as female. The median age of the respondents being 34 years, with a range of 1 to 76 years (Mean: 44.7, Mode: 65, Standard-Deviation: 19.6, Kurtosis: 0.6). The most common first symptom noticed by respondents was skin lesions (65%) followed by deformities (18%) (P value = 0.05%) occurring mostly in the feet (P-value = 0.48). Majority (52%) of the patients had taken more than 24 months (SD 18.72 OR 2.75) for a diagnosis to be made with a maximum delay of over 60 months. The most common cause of delay in seeking health care was lack of knowledge on leprosy (P value=Conclusions: There was a delay of 2 years in seeking health care for the majority of the patients. Key barriers to early diagnosis were lack of knowledge and infrastructure. Community sensitization and strengthening capacity building are needed to achieve early diagnosis of leprosy and proper management.
基金Supported by Hangzhou Municipal Bureau of Science and Technology,No.2021WJCY366.
文摘BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention.
文摘Ependymoma is a rare and chemotherapy-resistant brain tumor, which has resulted in a delay in the development of drugs to treat it. A subclass of supratentorial ependymomas (ST-EPN), designated ST-EPN-zinc finger-translocation-associated (ZFTA, ST-EPN-ZFTA), exhibits the expression of a fusion protein comprising ZFTA and v-rel reticuloendotheliosis viral oncogene homolog A (RELA), an effector transcription factor of the nuclear factor-kappa B (NF-κB) pathway (ZFTA-RELA). The expression of ZFTA-RELA results in the hyperactivation of the oncogenic NF-κB signaling pathway, which ultimately leads to the development of ST-EPN-ZFTA. To identify inhibitors of the NF-κB signaling pathway activated by the expression of ZFTA-RELA, we used a doxycycline-inducible ZFTA-RELA-expressing NF-κB reporter cell line and found that extracts of the fungus Neosartorya spinosa IFM 47025 exhibited NF-κB inhibitory activity. We identified eight compounds [aszonapyrone A (2), sartorypyrone A (3), epiheveadride (4), acetylaszonalenin (5), (R)-benzodiazepinedione (6), aszonalenin (7), sartorypyrone E (8) and (Z, Z)-N,N’-(1,2-bis[(4-methoxyphenyl)methylene]-1,2-ethanediyl)bis-formamide (9)] from N. spinosa IFM 47025 culture extract using a variety of chromatographic techniques. The structures of these compounds were identified through the analysis of various instrumental data (1D, 2D-NMR, MS, and optical rotation). The NF-κB responsive reporter assay indicated that compounds 2, 3, 5, 7, and 9 exhibited inhibitory activity. We further evaluated the inhibitory activity of these compounds against the expression of endogenous NF-κB responsive genes (CCND1, L1CAM, ICAM1, and TNF) and found that compound 2 showed significant inhibitory activity. Further studies are required to elucidate the mechanism of action of compound 2, which may serve as a lead compound for the development of a novel therapy for ST-EPN-ZFTA.
基金the Tianjin Municipal Natural Science Foundation,No.21JCYBJC01110。
文摘BACKGROUND The ubiquitin-proteasome pathway(UPP)has been proven to play important roles in cancer.AIM To investigate the prognostic significance of genes involved in the UPP and develop a predictive model for liver cancer based on the expression of these genes.METHODS In this study,UPP-related E1,E2,E3,deubiquitylating enzyme,and proteasome gene sets were obtained from the Kyoto Encyclopedia of Genes and Genomes(KEGG)database,aiming to screen the prognostic genes using univariate and multivariate regression analysis and develop a prognosis predictive model based RESULTS Five genes(including autophagy related 10,proteasome 20S subunit alpha 8,proteasome 20S subunit beta 2,ubiquitin specific peptidase 17 like family member 2,and ubiquitin specific peptidase 8)were proven significantly correlated with prognosis and used to develop a prognosis predictive model for liver cancer.Among training,validation,and Gene Expression Omnibus sets,the overall survival differed significantly between the high-risk and low-risk groups.The expression of the five genes was significantly associated with immunocyte infiltration,tumor stage,and postoperative recurrence.A total of 111 differentially expressed genes(DEGs)were identified between the high-risk and low-risk groups and they were enriched in 20 and 5 gene ontology and KEGG pathways.Cell division cycle 20,Kelch repeat and BTB domain containing 11,and DDB1 and CUL4 associated factor 4 like 2 were the DEGs in the E3 gene set that correlated with survival.CONCLUSION We have constructed a prognosis predictive model in patients with liver cancer,which contains five genes that associate with immunocyte infiltration,tumor stage,and postoperative recurrence.
基金supported by the National Natural Science Foundation of China(32102738,32122087,and 31972749)Scientific research project of Education Department of Jilin Province(No.JJKH20251201KJ)。
文摘Background Mastitis is an inflammatory disease of the mammary gland that has serious economic impacts on the dairy industry and endangers food safety.Our previous study found that the body has a gut/rumen-mammary gland axis and that disturbance of the gut/rumen microbiota could result in‘gastroenterogenic mastitis'.However,the mechanism has not been fully clarified.Recently,we found that long-term feeding of a high-concentrate diet induced mastitis in dairy cows,and the abundance of Stenotrophomonas maltophilia(S.maltophilia)was significantly increased in both the rumen and milk microbiota.Accordingly,we hypothesized that‘gastroenterogenic mastitis'can be induced by the migration of endogenous gut bacteria to the mammary gland.Therefore,this study investigated the mechanism by which enterogenic S.maltophilia induces mastitis.Results First,S.maltophilia was labelled with superfolder GFP and administered to mice via gavage.The results showed that treatment with S.maltophilia promoted the occurrence of mastitis and increased the permeability of the blood-milk barrier,leading to intestinal inflammation and intestinal leakage.Furthermore,tracking of ingested S.maltophilia revealed that S.maltophilia could migrate from the gut to the mammary gland and induce mastitis.Subsequently,mammary gland transcriptome analysis showed that the calcium and AMPK signalling pathways were significantly upregulated in mice treated with S.maltophilia.Then,using mouse mammary epithelial cells(MMECs),we verified that S.maltophilia induces mastitis through activation of the calcium-ROS-AMPK-mTOR-autophagy pathway.Conclusions In conclusion,the results showed that enterogenic S.maltophilia could migrate from the gut to the mammary gland via the gut-mammary axis and activate the calcium-ROS-AMPK-mTOR-autophagy pathway to induce mastitis.Targeting the gut-mammary gland axis may also be an effective method to treat mastitis.
基金National Nature Science Foundation of China(Nos.81960118,81860115,81760116 and 82060116)Guizhou Science and Technology Project:Qiankehe Foundation(No.(2020)1Y300)+8 种基金Natural Science Foundation of Sichuan(No.2022NSFSC0837)Science and Technology Project of Chengdu(No.2022-YF05-01811-SN)Science and Technology Project of Guizhou Province(No.YQK(2023)032)Guizhou Medical University Doctoral Start-Up Fund(No.gyfybsky-2021-27)Guizhou Medical University Doctoral Start-Up Fund(No.gyfybsky-2021-26)Guizhou Science and Technology Department(No.(2019)1259)Guizhou Science and Technology Department Guizhou Science and Technology Platform Talents(No.(2017)5718)Science and Technology Fund of Guizhou Provincial Health Commission(No.gzwki2021-382)The Affiliated Hospital of Guizhou Medical University Excellent Reserve Talent in 2023(No.gyfyxkrc-2023-06).
文摘Hepatocellular carcinoma(HCC),a common malignancy worldwide,still lacks effective clinical treatment.The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms.In our study,we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE,LC-MS,and ELISA.Subsequently,we demonstrated the high expression of peroxiredoxin 2(PRDX2)in HCC based on the TCGA database and clinical sample analysis.Furthermore,PRDX2 overexpression enhanced the viability of HCC cells.And PRDX2 silencing induced senescence of HCC cells.In vivo,knockdown of PRDX2 significantly reduced the weight of xenograft tumors.PRDX2 also was found to activate the Wnt/β-catenin pathway by inducingβ-catenin nuclear translocation.Consequently,we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells.
基金Supported by Basic and Applied Basic Research Found of Guangdong Province,No.2022A1515011307。
文摘BACKGROUND Fanlian Huazhuo Formula(FLHZF)has the functions of invigorating spleen and resolving phlegm,clearing heat and purging turbidity.It has been identified to have therapeutic effects on type 2 diabetes mellitus(T2DM)in clinical application.Non-alcoholic fatty liver disease(NAFLD)is frequently diagnosed in patients with T2DM.However,the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation.AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro.METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model.Subsequently,experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours.C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD,and then treated with the different concentrations of FLHZF for 10 weeks.RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro.Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress,regulating the AMPKα/SREBP-1C signaling pathway,activating autophagy,and inhibiting hepatocyte apoptosis.CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species,autophagy,apoptosis,and lipid synthesis signaling pathways,indicating its potential for clinical application in NAFLD.
基金supported by the Science and Technology Beneficiary Program of Ningxia Hui Autonomous Region(No.2023CMG03027)the Ningxia Key Research and Development Program(No.2022BEG03167)the National Natural Science Foundation of China(No.82060275).
文摘Background:This study aimed to portray the atomic intelligence and prognostic implications of differentially expressed genes and their involvement in biological pathways in endometrial carcinoma,with a specific focus on the impacts of exercise on cancer.Methods:We utilized a multi-faceted approach,including volcano plots,Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses,Venn diagrams,protein-protein interaction networks,Kaplan-Meier survival analysis,Gene Set Variety Analysis,and single-cell transcriptomic analysis.Furthermore,we profiled tumor mutational scenes,assessed the prognostic value of immune-related features,and conducted a comprehensive examination of genetic variations and their impact on tumor mutational burden across different cancer types.Multidimensional genomic interactions and methylation elements were also investigated.Using real-time quantitative PCR and immunofluorescence staining,the effects of B-cell lymphoma 2(BCL2)silencing on TNF-αand caspase-3 gene expression were evaluated.Results:Our study identified a noteworthy number of differentially expressed genes in endometrial carcinoma with potential links to athletic performance traits.BCL2 expression levels were found to be associated with survival outcomes,and its changeability across cancers was related to immune cell infiltration and immune checkpoint gene expression.Single-cell investigations uncovered cellular complexity within tumor microenvironments and critical biological pathways in BCL2-overexpressing cells.The expression flow and mutational effect of BCL2 in endometrial carcinoma were characterized,and the prognostic implications of immune-related features were assessed.Hereditary variations,including copy number variations and their relationship with gene expression and tumor mutational burden,were investigated.Multidimensional genomic transaction highlighted the essential role of regulatory genes in cancer pathogenesis.Silencing of the BCL2 gene significantly inhibited the proliferation of HEC-108 cells and promoted apoptosis,as evidenced by decreased TNF-αgene expression and increased caspase-3 gene expression.Immunofluorescence staining further confirmed these results.Conclusion:This study gives a point-by-point understanding of the atomic intelligence and prognostic implications in endometrial carcinoma and across various other cancers.BCL2’s role as a modulatory factor within the tumor-resistant environment and its potential impact on disease prognosis and response to immunotherapy were underscored.The multidimensional genomic analysis provides insights into the complex interaction between genetic and epigenetic variables in cancer,which may shed light on future therapeutic strategies.This study indicates that silencing the BCL2 gene can significantly inhibit tumor cell proliferation and promote apoptosis through the regulation of the TNF-αand caspase-3 pathways.
文摘Acute pancreatitis(AP)is a leading cause of gastrointestinal-related hospitalizations in the United States,resulting in 300000 admissions per year with an estimated cost of over$2.6 billion annually.The severity of AP is determined by the presence of pancreatic complications and end-organ damage.While moderate/severe pancreatitis can be associated with significant morbidity and mortality,the majority of patients have a mild presentation with an uncomplicated course and mortality rate of less than 2%.Despite favorable outcomes,the majority of mild AP patients are admitted,contributing to healthcare cost and burden.In this Editorial we review the performance of an emergency department(ED)pathway for patients with mild AP at a tertiary care center with the goal of reducing hospitalizations,resource utilization,and costs after several years of implementation of the pathway.We discuss the clinical course and outcomes of mild AP patients enrolled in the pathway who were successfully discharged from the ED compared to those who were admitted to the hospital,and identify predictors of successful ED discharge to select patients who can potentially be triaged to the pathway.We conclude that by implementing innovative clinical pathways which are established and reproducible,selected AP patients can be safely discharged from the ED,reducing hospitalizations and healthcare costs,without compromising clinical outcomes.We also identify a subset of patients most likely to succeed in this pathway.
基金Supported by National Natural Science Foundation of China,No.82100581。
文摘BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.
基金Grant support was received from the National Natural Science Foundation of China(32072182).
文摘Hyperuricemia is a high-risk factor for the development of gout and renal fibrosis,but the adverse effects of hyperuricemia on the liver have been seriously neglected.This research investigated the ameliorating effect of Lacticaseibacillus rhamnosus Fmb14 on hyperuricemia induced liver dysfunction both in vitro and in vivo.Cell free extracts of high dose L.rhamnosus Fmb14 treatment reduced the death rate of HepG2 cell lines from 24.1%to 14.9%by inhibiting NLRP3 recruitment,which was mainly activated by reactive oxygen species release and mitochondrial membrane potential disorder.In purine dietary induced hyperuricemia(PDIH)mice model,liver oedema and pyroptosis were ameliorated after L.rhamnosus Fmb14 administration through downregulating the expression levels of NLRP3,caspase-1 and gasdermin-D from 1.61 to 0.86,3.15 to 1.01 and 5.63 to 2.02,respectively.L.rhamnosus Fmb14 administration restored mitochondrial inner membrane protein(MPV17)and connexin 43 from 2.83 and 0.73 to 0.80 and 0.98 respectively in PDIH mice,indicating that dysbiosis of mitochondrial membrane potential was restored in liver.Intriguingly,PDIH pyroptosis stimulates the process of apoptosis,which leads to severe leakage of hepatocytes,and both of pyroptosis and apoptosis were decreased after L.rhamnosus Fmb14 treatment.Therefore,L.rhamnosus Fmb14 is a promising biological resource to maintain homeostasis of the liver in hyperuricemia and the prevention of subsequent complications.
基金supported by the National Natural Science Foundation of China(81503187)。
文摘Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma.
文摘Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC.
文摘AIM:To understand the molecular connectivity between the intraocular pressure(IOP)and glaucoma which will provide possible clues for biomarker candidates.METHODS:The current study uncovers the important genes connecting IOP with the core functional modules of glaucoma.An integrated analysis was performed using glaucoma and IOP microarray datasets to screen for differentially expressed genes(DEGs)in both conditions.To the selected DEGs,the protein interaction network was constructed and dissected to determine the core functional clusters of glaucoma.For the clusters,the connectivity of IOP DEGs was determined.Further,enrichment analyses were performed to assess the functional annotation and potential pathways of the crucial clusters.RESULTS:The gene expression analysis of glaucoma and IOP with normal control showed that 408 DEGs(277 glaucoma and 131 IOP genes)were discovered from two GEO datasets.The 290 DEGs of glaucoma were extended to form a network containing 1495 proteins with 9462 edges.Using ClusterONE,the network was dissected to have 12 clusters.Among them,three clusters were linked with three IOP DEGs[N-Myc and STAT Interactor(NMI),POLR3G(RNA Polymerase Ⅲ Subunit G),and APAF1-interacting protein(APIP)].In the clusters,ontology analysis revealed that RNA processing and transport,p53 class mediators resulting in cell cycle arrest,cellular response to cytokine stimulus,regulation of phosphorylation,regulation of type Ⅰ interferon production,DNA deamination,and cellular response to hypoxia were significantly enriched to be implicated in the development of glaucoma.Finally,NMI,POLR3G,and APIP may have roles that were noticed altered in glaucoma and IOP conditions.CONCLUSION:Our findings could help to discover new potential biomarkers,elucidate the underlying pathophysiology,and identify new therapeutic targets for glaucoma.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.:82003807,82173394)the Shaanxi Province Science Foundation,China(Grant No.:2023-GHZD-19)+1 种基金the Medical Foundation-Clinical Integration Program of Xi'an Jiaotong University,China(Grant No.:YXJLRH2022043)the Xi'an Jiaotong University Free Exploration and Innovation-Teacher Project Foundation,China(Grant No.:xzy012023104).
文摘Chemotherapy resistance plays a pivotal role in the prognosis and therapeutic failure of patients with colorectal cancer(CRC).Cisplatin(DDP)-resistant cells exhibit an inherent ability to evade the toxic chemotherapeutic drug effects which are characterized by the activation of slow-cycle programs and DNA repair.Among the elements that lead to DDP resistance,O^(6)-methylguanine(O^(6)-MG)-DNA-methyltransferase(MGMT),a DNA-repair enzyme,performs a quintessential role.In this study,we clarify the significant involvement of MGMT in conferring DDP resistance in CRC,elucidating the underlying mechanism of the regulatory actions of MGMT.A notable upregulation of MGMT in DDP-resistant cancer cells was found in our study,and MGMT repression amplifies the sensitivity of these cells to DDP treatment in vitro and in vivo.Conversely,in cancer cells,MGMT overexpression abolishes their sensitivity to DDP treatment.Mechanistically,the interaction between MGMT and cyclin dependent kinase 1(CDK1)inducing slow-cycling cells is attainted via the promotion of ubiquitination degradation of CDK1.Meanwhile,to achieve nonhomologous end joining,MGMT interacts with XRCC6 to resist chemotherapy drugs.Our transcriptome data from samples of 88 patients with CRC suggest that MGMT expression is co-related with the Wnt signaling pathway activation,and several Wnt inhibitors can repress drug-resistant cells.In summary,our results point out that MGMT is a potential therapeutic target and predictive marker of chemoresistance in CRC.
基金supported by the Open Project Program of the State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science and Technology(No.SKLFNS-KF-202201)the Open Project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China(No.GMU-2022-HJZ-06)。
文摘Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.
文摘In this editorial,we comment on the recent article by Huang et al.The editorial focuses specifically on the molecular mechanisms of hepatocellular carcinoma(HCC),mechanism of Wnt/β-catenin pathway in HCC,and protective mechanism of Calculus bovis(CB)in HCC.Liver cancer is the fourth most common cause of cancer-related deaths globally.The most prevalent kind of primary liver cancer,HCC,is typically brought on by long-term viral infections(hepatitis B and C),non-alcoholic steatohepatitis,excessive alcohol consumption,and other conditions that can cause the liver to become chronically inflamed and cirrhotic.CB is a wellknown traditional remedy in China and Japan and has been used extensively to treat a variety of diseases,such as high fever,convulsions,and stroke.Disturbances in lipid metabolism,cholesterol metabolism,bile acid metabolism,alcohol metabolism,and xenobiotic detoxification lead to fatty liver disease and liver cirrhosis.Succinate,which is a tricarboxylic acid cycle intermediate,is vital to energy production and mitochondrial metabolism.It is also thought to be a signaling molecule in metabolism and in the development and spread of liver malignancies.The Wnt/β-catenin pathway is made up of a group of proteins that are essential for both adult tissue homeostasis and embryonic development.Cancer is frequently caused by the dysregulation of the Wnt/β-catenin signaling pathway.In HCC liver carcinogenesis,Wnt/β-catenin signaling is activated by the expression of downstream target genes.Communication between the liver and the gut exists via the portal vein,biliary tract,and systemic circulation.This"gutliver axis"controls intestinal physiology.One of the main factors contributing to the development,progression,and treatment resistance of HCC is the abnormal activation of the Wnt/β-Catenin signaling pathway.Therefore,understanding this pathway is essential to treating HCC.Eleven ingredients of CB,particularly oleanolic acid,ergosterol,and ursolic acid,have anti-primary liver cancer properties.Additionally,CB is important in the treatment of primary liver cancer through pathways linked to immune system function and apoptosis.CB also inhibits the proliferation of cancer stem cells and tumor cells and controls the tumor microenvironment.In the future,clinicians may be able to recommend one of many potential new drugs from CB ingredients to treat HCC expression,development,and progress.