Exfoliated ECTO-NOX3 (ENOX3) proteins, are members of the human TM9 superfamily of transmembrane proteins that generate superoxide, are present in blood and other body fluids, and increase activity with age beginning ...Exfoliated ECTO-NOX3 (ENOX3) proteins, are members of the human TM9 superfamily of transmembrane proteins that generate superoxide, are present in blood and other body fluids, and increase activity with age beginning about age 30, hence age-related NOX (arNOX or ENOX3). A yeast deletion library was screened based on NADH fluorescence using a 384 well plate assay to identify a yeast isolate lacking a previously identified cell surface oxidase exhibiting an oscillatory pattern with a period length of 26 min and capable of generating superoxide. The cDNA was cloned from a yeast over expression library using NADH as an impermeant substrate with analysis by Fast Fourier Transform and decomposition fits. The objective was to identify and sequence an ENOX homologue in Saccharomyces cerevisiae with a 26 min rather than a 24 or 25 min period length. The finding identified YER113C as the yeast ENOX3 protein with a 26 min period and capable of generating superoxide. The encoded protein was expressed in bacteria and characterized. Gel slices of expressed proteins revealed a protein of ca. 81,545 kDa with properties paralleling those of human ar-NOX (periodic NADH oxidation, protein disulfide thiol interchange, inhibited by mammalian arNOX inhibitors and superoxide production inhibited by superoxide dismutase). The YER113C sequence exhibited a 44% similarity and a 26% identity with the mammalian ENOX3 SF4 (arNOX SF4) of the TM9 superfamily of transmembrane proteins1. The YER113C deletion mutant lacked arNOX activity.展开更多
Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introdu...Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introduction of contaminants into Cu-SAPO-18,the quantity of acidic sites and Cu^2+ species in catalyst decreases owing to the replacement of H^+ and Cu^2+ by K^+,Na^+,Ca^2+,and Mg^2+.Furthermore,the loss of isolated Cu^2+ induces the generation of CuO and CuAl2O4-like phases,which causes further loss in the Brunauer-Emmett-Teller surface area of the catalyst.Consequently,the deNOx performance of the contaminated Cu-SAPO-18 catalysts drops.Such decline in NH3-SCR performance becomes more pronounced by increasing the contaminant contents from 0.5 to 1.0 mmol/gcatal.In addition,the deactivation influence of the contaminants on Cu-SAPO-18 is presented in the order of K>Na>Ca>Mg,which is consistent with the order of reduction of acidic sites.To a certain degree,the effect of the acidic sites on the deactivation of Cu-SAPO-18 might be more significant than that of isolated Cu2+ and the catalyst framework.Moreover,kinetic analysis of NH3-SCR was conducted,and the results indicate that there is no influence of contaminants on the NH3-SCR mechanism.展开更多
NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx r...NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades.This work reports the NSR of nitric oxide(NO)by combining non-thermal plasma(NTP)and Co/Pt/Ba/γ-Al2O3(Co/PBA)catalyst using methane as a reductant.The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150°C–350°C,and NOx conversion of the 8%Co/PBA catalyst reaches 96.8%at 350°C.Oxygen(O_(2))has a significant effect on the removal of NOx,and the NOx conversion increases firstly and then decreases when the O_(2)concentration ranges from 2%to 10%.Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts.There is a negative correlation between sulfur dioxide(SO_(2))and NOx conversion in the NTP system,and the 8%Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts,which shows that Co has a certain SO_(2)resistance.展开更多
文摘Exfoliated ECTO-NOX3 (ENOX3) proteins, are members of the human TM9 superfamily of transmembrane proteins that generate superoxide, are present in blood and other body fluids, and increase activity with age beginning about age 30, hence age-related NOX (arNOX or ENOX3). A yeast deletion library was screened based on NADH fluorescence using a 384 well plate assay to identify a yeast isolate lacking a previously identified cell surface oxidase exhibiting an oscillatory pattern with a period length of 26 min and capable of generating superoxide. The cDNA was cloned from a yeast over expression library using NADH as an impermeant substrate with analysis by Fast Fourier Transform and decomposition fits. The objective was to identify and sequence an ENOX homologue in Saccharomyces cerevisiae with a 26 min rather than a 24 or 25 min period length. The finding identified YER113C as the yeast ENOX3 protein with a 26 min period and capable of generating superoxide. The encoded protein was expressed in bacteria and characterized. Gel slices of expressed proteins revealed a protein of ca. 81,545 kDa with properties paralleling those of human ar-NOX (periodic NADH oxidation, protein disulfide thiol interchange, inhibited by mammalian arNOX inhibitors and superoxide production inhibited by superoxide dismutase). The YER113C sequence exhibited a 44% similarity and a 26% identity with the mammalian ENOX3 SF4 (arNOX SF4) of the TM9 superfamily of transmembrane proteins1. The YER113C deletion mutant lacked arNOX activity.
基金supported by the National Natural Science Foundation of China(21473064)~~
文摘Contaminants(K,Na,Ca,and Mg)were introduced into Cu-SAPO-18 via incipient wetness impregnation to investigate their effect on the selective catalytic reduction of NOx with NH3(NH3-SCR)over Cu-SAPO-18.After the introduction of contaminants into Cu-SAPO-18,the quantity of acidic sites and Cu^2+ species in catalyst decreases owing to the replacement of H^+ and Cu^2+ by K^+,Na^+,Ca^2+,and Mg^2+.Furthermore,the loss of isolated Cu^2+ induces the generation of CuO and CuAl2O4-like phases,which causes further loss in the Brunauer-Emmett-Teller surface area of the catalyst.Consequently,the deNOx performance of the contaminated Cu-SAPO-18 catalysts drops.Such decline in NH3-SCR performance becomes more pronounced by increasing the contaminant contents from 0.5 to 1.0 mmol/gcatal.In addition,the deactivation influence of the contaminants on Cu-SAPO-18 is presented in the order of K>Na>Ca>Mg,which is consistent with the order of reduction of acidic sites.To a certain degree,the effect of the acidic sites on the deactivation of Cu-SAPO-18 might be more significant than that of isolated Cu2+ and the catalyst framework.Moreover,kinetic analysis of NH3-SCR was conducted,and the results indicate that there is no influence of contaminants on the NH3-SCR mechanism.
基金by the National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019A13)the National Key Research and Development Project of China(No.2019YFC1805505)+2 种基金the Shanxi Province Bidding Project(No.20191101007)the Major Science and Technology Projects of Shanxi Province(No.20181102017)State Key Laboratory of Organic Geochemistry(No.SKLOG-201909)。
文摘NOx storage and reduction(NSR)technology has been regarded as one of the most promising strategies for the removal of nitric oxides(NOx)from lean-burn engines,and the potential of the plasma catalysis method for NOx reduction has been confirmed in the past few decades.This work reports the NSR of nitric oxide(NO)by combining non-thermal plasma(NTP)and Co/Pt/Ba/γ-Al2O3(Co/PBA)catalyst using methane as a reductant.The experimental results reveal that the NOx conversion of NSR assisted by NTP is notably enhanced compared to the catalytic efficiency obtained from NSR in the range of 150°C–350°C,and NOx conversion of the 8%Co/PBA catalyst reaches 96.8%at 350°C.Oxygen(O_(2))has a significant effect on the removal of NOx,and the NOx conversion increases firstly and then decreases when the O_(2)concentration ranges from 2%to 10%.Water vapor reduces the NOx storage capacity of Co/PBA catalysts on account of the competition for adsorption sites on the surface of Co/PBA catalysts.There is a negative correlation between sulfur dioxide(SO_(2))and NOx conversion in the NTP system,and the 8%Co/PBA catalyst exhibits higher NOx conversion compared to other catalysts,which shows that Co has a certain SO_(2)resistance.