A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coars...A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coarse-textured dark loessial soilafter continuous winter wheatcropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or incombination. Annual N and P (P_2O_5) rates were 0, 45, 90, 135 and 180 kg ha^(-1). After 15successive cropping cycles, the soil samples were taken from each treatment for analysis of NO_3-Nconcentration. The results showed that NO_3-N distribution in the soil profile was quite differentamong the treatments. The application of fertilizer N alone resulted in higher NO_3-N concentrationin the soil profile than the combined application of N and P, showing that application of P couldgreatly reduce the NO_3-N accumulation. With an annual application of 180 kg N ha^(-1) alone, a peakin NO_3-N accumulation occurred at 140 cm soildepth, and the maximum NO_3-N concentration in thesoils was 67.92 mg kg^(-1). The amount of NO_3-N accumulated in the soil profile decreased as thecumulative N uptake by the winter wheat increased. Application of a large amount of N resulted inlowerN recoveries in winter wheat and greater NO_3-N accumulation in soil profile. KO_3-N did notenter underground water in the study region; therefore, there is no danger of underground waterpollution. Amount of NO_3-N accumulation can be predicted by an equation according to annual N and Prates based on the results of this experiment.展开更多
基金Project supported by the Chinese Academy of Sciences (No. KZCX2)the National Natural Science Foundation of China (No. 40025106).
文摘A long-term fertilizer experiment on dry land of the Loess Plateau, northwestChina, has been conducted since 1984 to study the distribution and accumulation of NO_3-N down to adepth of 400 cm in the profile of a coarse-textured dark loessial soilafter continuous winter wheatcropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or incombination. Annual N and P (P_2O_5) rates were 0, 45, 90, 135 and 180 kg ha^(-1). After 15successive cropping cycles, the soil samples were taken from each treatment for analysis of NO_3-Nconcentration. The results showed that NO_3-N distribution in the soil profile was quite differentamong the treatments. The application of fertilizer N alone resulted in higher NO_3-N concentrationin the soil profile than the combined application of N and P, showing that application of P couldgreatly reduce the NO_3-N accumulation. With an annual application of 180 kg N ha^(-1) alone, a peakin NO_3-N accumulation occurred at 140 cm soildepth, and the maximum NO_3-N concentration in thesoils was 67.92 mg kg^(-1). The amount of NO_3-N accumulated in the soil profile decreased as thecumulative N uptake by the winter wheat increased. Application of a large amount of N resulted inlowerN recoveries in winter wheat and greater NO_3-N accumulation in soil profile. KO_3-N did notenter underground water in the study region; therefore, there is no danger of underground waterpollution. Amount of NO_3-N accumulation can be predicted by an equation according to annual N and Prates based on the results of this experiment.