Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by...Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,展开更多
An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatem...An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.展开更多
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to t...Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.展开更多
NO oxidation is the key reaction for the oxidative NO x removal process.In this work,the catalytic NO oxidation performance of the Al2O3 supported metal oxide catalysts(M-Al2O3,M=V,Mn,Fe,Co,Ni and Ce)is evaluated.The ...NO oxidation is the key reaction for the oxidative NO x removal process.In this work,the catalytic NO oxidation performance of the Al2O3 supported metal oxide catalysts(M-Al2O3,M=V,Mn,Fe,Co,Ni and Ce)is evaluated.The oxidation product is absorbed by the alkaline solution for NO x removal.The NO oxidation activity increases in the following order:V<<Ce<Ni<Fe<Co<Mn.As the NO oxidation involves the O uptake into the metal oxide lattice and oxidation of the adsorbed NO by the lattice O,the highest activity of Mn is attributed to the appropriate redox potential of Mn,which favors both the O uptake and the NO oxidation steps.For all the M-Al2O3 catalysts,there is an intermediate temperature to achieve maximum NO conversion,which is lower for more efficient M-Al2O3 catalyst.The temperature dependence suggests that the NO oxidation at low temperature is kinetically controlled while it is thermodynamically limited at higher temperature.The NO x removal ratio by the alkaline solution absorption increases with the NO2/NO ratio,with a maximum removal ratio of 80%when the NO2/NO ratio is higher than 3,indicating that a very high NO conversion is unnecessary.展开更多
Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two differ...Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes, wire- cylinder reactor, pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency of 90% was observed for the pipe-cylinder reactor as compared to that of 53.4% for the wire-cylinder reactor. Furthermore, for the same energy consumed per NO molecule (about 73 eV/NO molecule), the removal efficiency increased from 67% for the wire- cylinder to about 98% for the pipe-cylinder which was quite appreciable.展开更多
The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO conce...The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.展开更多
EXTENSIVE studies of SO<sub>2</sub> and NO<sub>x</sub> removals from flue gases of coal-fired powered plants by means of low temperature plasmas have been carried out for years. Low temperature...EXTENSIVE studies of SO<sub>2</sub> and NO<sub>x</sub> removals from flue gases of coal-fired powered plants by means of low temperature plasmas have been carried out for years. Low temperature plasmas are produced by electron beam radiation (EB), impulse high voltage discharges (IHVD), dielectric barrier discharges (DBD), etc. Chemical kinetic study of SO<sub>2</sub> and NO<sub>x</sub> removals by EB was started in the 1970s, and a widely used kinetic model was completed at the end展开更多
Removal of SO2 and NOx by pulsed corona combined with in situ alkali absorption was experimentally investigated.In the reactor,a plate-wire-plate combination is devised for generating pulsed corona and then alkaline a...Removal of SO2 and NOx by pulsed corona combined with in situ alkali absorption was experimentally investigated.In the reactor,a plate-wire-plate combination is devised for generating pulsed corona and then alkaline absorbent slurries were introduced into the reactor by a continuous band conveying system to capture the gaseous reaction products.It was found that both SO2 and NO could be removed by corona combined with in situ alkali absorption.The removal of SO2 increased to 75%with the corona discharge,compared with 60%removal only with Ca(OH)2 absorption.About 40%removal of NO was reached by pulsed corona combined with in situ Ca(OH)2 absorption.It was found that SO2 and NO in the gas stream are oxidized to SO3 and NO2 by pulsed corona respectively,and then absorbed by the alkali in the reactor.The removals of SO2 as well as NO were higher with Ca(OH)2 as the absorbent,compared with using CaCO3 or ZnO.展开更多
The activities of ZrO_2-supported precious metal catalysts for simultaneous removal of soot and NO_x in the presence of rich O_2and H_2O as well as SO_2 have been studied by keeping loose contact between catalyst and ...The activities of ZrO_2-supported precious metal catalysts for simultaneous removal of soot and NO_x in the presence of rich O_2and H_2O as well as SO_2 have been studied by keeping loose contact between catalyst and soot.The results show that only Ru,Ir and Rh have catalytic activity for simultaneous removal of soot and NO_x and the order of catalytic activity is Ru > Ir > Rh.Pt has the catalytic activity only for the removal of soot,and Ag,Pd,and Au have hardly any catalytic activities for the removal of soot and NO_x.The relationships between catalytic activity of precious metal catalysts and various reaction conditions were discussed.展开更多
Removal of nitrogen oxides (NO X) in flue gas by means of nonequilibrium plasma technology is a very prospect and attractive method. As the nonequilibrium plasma micro discharges can generate a powerful energy flux...Removal of nitrogen oxides (NO X) in flue gas by means of nonequilibrium plasma technology is a very prospect and attractive method. As the nonequilibrium plasma micro discharges can generate a powerful energy flux, imparted to the flue gas, the molecules and atoms of pollutants are motivated and decomposed, and then NO X in the flue gas are decomposed and conversed in the particular conditions. Based on nonequilibrium plasma in combination with catalytic principle, an experimental investigation on NO X decomposition and conversion with Al 2O 3 catalysts was carried out and the NO X removal rate up to 95% was obtained. The NO X decomposition and conversion principle with Al 2O 3 catalysts was also discussed.展开更多
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after...BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.展开更多
In June 2024,startup company Equatic(Santa Monica,CA,USA)announced that it had begun engineering work on the world’s largest and first commercial scale facility using the ocean to remove CO_(2) from the atmosphere[1]...In June 2024,startup company Equatic(Santa Monica,CA,USA)announced that it had begun engineering work on the world’s largest and first commercial scale facility using the ocean to remove CO_(2) from the atmosphere[1].The company claims its plant at a yet-to-be determined site in Quebec,Canada,will be operational by 2027,sequestering 300 t of CO_(2) per day at full capacity.Equatic is already building a similar,but smaller,facility called Equatic-1 in Singapore(Fig.1)[2].That project,expected to be completed in 2025,will have the capacity to remove 10 t of CO_(2) per day.展开更多
Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and int...Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.展开更多
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio...Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.展开更多
Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrosp...Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.展开更多
Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate o...Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.展开更多
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of...The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.展开更多
Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture ha...Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.展开更多
文摘Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,
文摘An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.
文摘Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.
基金supported by the research funds from RIPP, SINOPEC
文摘NO oxidation is the key reaction for the oxidative NO x removal process.In this work,the catalytic NO oxidation performance of the Al2O3 supported metal oxide catalysts(M-Al2O3,M=V,Mn,Fe,Co,Ni and Ce)is evaluated.The oxidation product is absorbed by the alkaline solution for NO x removal.The NO oxidation activity increases in the following order:V<<Ce<Ni<Fe<Co<Mn.As the NO oxidation involves the O uptake into the metal oxide lattice and oxidation of the adsorbed NO by the lattice O,the highest activity of Mn is attributed to the appropriate redox potential of Mn,which favors both the O uptake and the NO oxidation steps.For all the M-Al2O3 catalysts,there is an intermediate temperature to achieve maximum NO conversion,which is lower for more efficient M-Al2O3 catalyst.The temperature dependence suggests that the NO oxidation at low temperature is kinetically controlled while it is thermodynamically limited at higher temperature.The NO x removal ratio by the alkaline solution absorption increases with the NO2/NO ratio,with a maximum removal ratio of 80%when the NO2/NO ratio is higher than 3,indicating that a very high NO conversion is unnecessary.
文摘Application of plasma chemistry for gas cleaning is gaining prominence in recent years, mainly from an energy efficiency point of view. In this paper we conducted a comparative study of NO/NOx removal using two different types of dielectric barrier discharge electrodes, wire- cylinder reactor, pipe-cylinder reactor. Investigations were first carried out with synthetic gases to obtain the baseline information on the NO/NOx removal with respect to the two geometries studied. Further, experiments were carried out with raw diesel exhaust under loaded condition. A high NOx removal efficiency of 90% was observed for the pipe-cylinder reactor as compared to that of 53.4% for the wire-cylinder reactor. Furthermore, for the same energy consumed per NO molecule (about 73 eV/NO molecule), the removal efficiency increased from 67% for the wire- cylinder to about 98% for the pipe-cylinder which was quite appreciable.
文摘The study on the removal of NOx from simulated flue gas has been carded out in a lab-scale bubbling reactor using acidic solutions of sodium chlorite. Experiments were performed at various pH values and inlet NO concentrations in the absence or presence of SO2 gas at 45℃. The effect of SO2 on NO oxidation and NO2 absorption was critically examined. The oxidative ability of sodium chlorite was investigated at different pH values and it was found to be a better oxidant at a pH less than 4. In acidic medium, sodium chlorite decomposed into C102 gas, which is believed to participate in NO oxidation as well as in NO2 absorption. A plausible NOx removal mechanism using acidic sodium chlorite solution has been postulated. A maximum NOx removal efficiency of about 81% has been achieved.
文摘EXTENSIVE studies of SO<sub>2</sub> and NO<sub>x</sub> removals from flue gases of coal-fired powered plants by means of low temperature plasmas have been carried out for years. Low temperature plasmas are produced by electron beam radiation (EB), impulse high voltage discharges (IHVD), dielectric barrier discharges (DBD), etc. Chemical kinetic study of SO<sub>2</sub> and NO<sub>x</sub> removals by EB was started in the 1970s, and a widely used kinetic model was completed at the end
基金Supported by the Science and Technology Development Project of Zhejiang Province(2007C13085)Hangzhou City(20070733B28)
文摘Removal of SO2 and NOx by pulsed corona combined with in situ alkali absorption was experimentally investigated.In the reactor,a plate-wire-plate combination is devised for generating pulsed corona and then alkaline absorbent slurries were introduced into the reactor by a continuous band conveying system to capture the gaseous reaction products.It was found that both SO2 and NO could be removed by corona combined with in situ alkali absorption.The removal of SO2 increased to 75%with the corona discharge,compared with 60%removal only with Ca(OH)2 absorption.About 40%removal of NO was reached by pulsed corona combined with in situ Ca(OH)2 absorption.It was found that SO2 and NO in the gas stream are oxidized to SO3 and NO2 by pulsed corona respectively,and then absorbed by the alkali in the reactor.The removals of SO2 as well as NO were higher with Ca(OH)2 as the absorbent,compared with using CaCO3 or ZnO.
基金the Special Fund for the Development of Strategic and New Industry in Shenzhen,China(No.JCYJ20130329162012793)National Natural Science Foundation for Young Scholars,China(Nos.20907012,ZYC201105160189A)the Basic Research Plan in Shenzhen City,China(No.JC201105160593A)
文摘The activities of ZrO_2-supported precious metal catalysts for simultaneous removal of soot and NO_x in the presence of rich O_2and H_2O as well as SO_2 have been studied by keeping loose contact between catalyst and soot.The results show that only Ru,Ir and Rh have catalytic activity for simultaneous removal of soot and NO_x and the order of catalytic activity is Ru > Ir > Rh.Pt has the catalytic activity only for the removal of soot,and Ag,Pd,and Au have hardly any catalytic activities for the removal of soot and NO_x.The relationships between catalytic activity of precious metal catalysts and various reaction conditions were discussed.
文摘Removal of nitrogen oxides (NO X) in flue gas by means of nonequilibrium plasma technology is a very prospect and attractive method. As the nonequilibrium plasma micro discharges can generate a powerful energy flux, imparted to the flue gas, the molecules and atoms of pollutants are motivated and decomposed, and then NO X in the flue gas are decomposed and conversed in the particular conditions. Based on nonequilibrium plasma in combination with catalytic principle, an experimental investigation on NO X decomposition and conversion with Al 2O 3 catalysts was carried out and the NO X removal rate up to 95% was obtained. The NO X decomposition and conversion principle with Al 2O 3 catalysts was also discussed.
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
基金Supported by the New National Excellence Program of the Ministry for Innovation and Technology From the Source of the National Research,Development and Innovation Fund,No.ÚNKP-22-4-SZTE-296,No.ÚNKP-23-3-SZTE-268,and No.ÚNKP-23-5-SZTE-719the EU’s Horizon 2020 Research and Innovation Program under Grant Agreement,No.739593.
文摘BACKGROUND Choosing an optimal post-polypectomy management strategy of malignant colorectal polyps is challenging,and evidence regarding a surveillance-only strategy is limited.AIM To evaluate long-term outcomes after endoscopic removal of malignant colorectal polyps.METHODS A single-center retrospective cohort study was conducted to evaluate outcomes after endoscopic removal of malignant colorectal polyps between 2010 and 2020.Residual disease rate and nodal metastases after secondary surgery and local and distant recurrence rate for those with at least 1 year of follow-up were invest-igated.Event rates for categorical variables and means for continuous variables with 95%confidence intervals were calculated,and Fisher’s exact test and Mann-Whitney test were performed.Potential risk factors of adverse outcomes were RESULTS In total,135 lesions(mean size:22.1 mm;location:42%rectal)from 129 patients(mean age:67.7 years;56%male)were enrolled.The proportion of pedunculated and non-pedunculated lesions was similar,with en bloc resection in 82%and 47%of lesions,respectively.Tumor differentiation,distance from resection margins,depth of submucosal invasion,lymphovascular invasion,and budding were reported at 89.6%,45.2%,58.5%,31.9%,and 25.2%,respectively.Residual tumor was found in 10 patients,and nodal metastasis was found in 4 of 41 patients who underwent secondary surgical resection.Univariate analysis identified piecemeal resection as a risk factor for residual malignancy(odds ratio:1.74;P=0.042).At least 1 year of follow-up was available for 117 lesions from 111 patients(mean follow-up period:5.59 years).Overall,54%,30%,30%,11%,and 16%of patients presented at the 1-year,3-year,5-year,7-year,and 9-10-year surveillance examinations.Adverse outcomes occurred in 9.0%(local recurrence and dissemination in 4 patients and 9 patients,respectively),with no difference between patients undergoing secondary surgery and surveillance only.CONCLUSION Reporting of histological features and adherence to surveillance colonoscopy needs improvement.Long-term adverse outcome rates might be higher than previously reported,irrespective of whether secondary surgery was performed.
文摘In June 2024,startup company Equatic(Santa Monica,CA,USA)announced that it had begun engineering work on the world’s largest and first commercial scale facility using the ocean to remove CO_(2) from the atmosphere[1].The company claims its plant at a yet-to-be determined site in Quebec,Canada,will be operational by 2027,sequestering 300 t of CO_(2) per day at full capacity.Equatic is already building a similar,but smaller,facility called Equatic-1 in Singapore(Fig.1)[2].That project,expected to be completed in 2025,will have the capacity to remove 10 t of CO_(2) per day.
基金financial support from the National Key Research and Development Program of China(2018YFB0605003).
文摘Dust removal from pyrolytic vapors at high temperatures is an obstacle to the industrialization of the coal pyrolysis process.In this work,a granular bed with expanded perlites as filtration media was designed and integrated into a 10 t·d^(–1)coal pyrolysis facility.The testing results showed that around 97.56%dust collection efficiency was achieved.As a result,dust content in tar was significantly lowered.The pressure drop of the granular bed maintained in the range of 356 Pa to 489 Pa.The dust size in the effluent after filtration exhibited a bimodal distribution,which was attributed to the heterogeneity of the dust components.The effects of filtration bed on pyrolytic product yields were also discussed.A modified filtration model based on the macroscopic phenomenological theory was proposed to describe the performance of the granular bed.The computation results were well agreed with the experimental data.
基金supported by the National Natural Science Foundation of China(52375420,52005134 and51675453)Natural Science Foundation of Heilongjiang Province of China(YQ2023E014)+5 种基金Self-Planned Task(No.SKLRS202214B)of State Key Laboratory of Robotics and System(HIT)China Postdoctoral Science Foundation(2022T150163)Young Elite Scientists Sponsorship Program by CAST(No.YESS20220463)State Key Laboratory of Robotics and System(HIT)(SKLRS-2022-ZM-14)Open Fund of Key Laboratory of Microsystems and Microstructures Manufacturing(HIT)(2022KM004)Fundamental Research Funds for the Central Universities(Grant Nos.HIT.OCEF.2022024 and FRFCU5710051122)。
文摘Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives.
基金supported by the Opening Project of the Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource(Grant No.2021ABPCR010)the Natural Science Research Project of Jiangsu Higher Education Institutions of China(Grants No.20KJB150035,21KJD610004,and 21KJA530004).
文摘Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.
文摘Coacervation of oxidized glutathione(GSSG)and a cationic surfactant,didodecyldimethylammonium bromide(DDAB),was constructed mainly driven by the electrostatic and hydrophobic interactions.The pH-dependent coacervate of GSSG-DDAB(1∶4,mol/mol)was analyzed.Under acidic and neutral conditions,a turbid suspension of droplets is observed,and alkaline pH results in the phase separation of coacervates as the top phase.The coacervate phase exhibits good performance(extraction efficiency>85%)in extracting several dyes from water,including brilliant yellow,acid red 13,cresyl violet acetate,eriochrom blue SE,and 4-hydroxyazobenzene.The dyes are added into the suspension in acidic conditions.Then,the dyes are enriched and extracted along with the coacervates as the top phase when pH is adjusted to~10.Coacervation of GSSG with DDAB provides a simple approach to extract organic pollutants in wastewater treatment.
基金supported by the Natural Scienceof Shandong Province,China(ZR2019MEE033)。
文摘The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.
文摘Background,aim,and scope Owing to the rapid development of modernisation and urbanisation,living standards have gradually improved.However,the widespread use of high-energy-consuming indoor appliances and furniture has made indoor environments a primary environmental problem affecting human health.Sick building syndrome(SBS)and building-related illness(BRI)have occurred,and indoor air conditions have been extensively studied.Common indoor pollutants include CO,CO_(2),volatile organic compounds(VOCs)(such as the formaldehyde and benzene series),NOx(NO and NO_(2)),and polycyclic aromatic hydrocarbons(PAHs).VOCs have replaced SO_(2)as the“The Fourteenth Five-Year Plan”urban air quality assessment new indicators.Indoor VOCs can cause diseases such as cataract,asthma,and lung cancer.To protect human health,researchers have proposed several indoor air purification technologies,including adsorption,filtration,electrostatic dust removal,ozonation,and plant purification.However,each technology has drawbacks,such as high operating costs,high energy consumption,and the generation of secondary waste or toxic substances.Plant degradation of VOCs as a bioremediation technology has the characteristics of low cost,high efficiency,and sustainability,thereby becoming a potential green solution for improving indoor air quality.This study introduces the research status and mechanism of plant removal of indoor VOCs and provides an experimental basis and scientific guidance for analysing the mechanism of plant degradation of pollutants.Materials and methods This study reviews studies on the harm caused by indoor pollutants to human health and related sources,mainly investigating the degradation of indoor formaldehyde,BTEX(benzene,toluene,ethylbenzene,and xylene)plant mechanisms,and research results.Results Plants can remove VOCs via stomatal and non-stomatal adsorption,interfoliar microbial,rhizosphere microbial,and growth media.Benzene,toluene,and xylene(BTX)are adsorbed by pores,hydroxylated into fumaric acid,and then removed into CO_(2) and H_(2)O by TCA.Formaldehyde enters plant leaves through the stomata and epidermal waxy substances and is adsorbed.After the two steps of enzymatic oxidation,formic acid and CO_(2) are generated.Finally,it enters the Calvin cycle and removes glucose and other nontoxic compounds.Discussion The non-stomatal degradation of VOCs can be divided into adsorption by cuticular wax and active adsorption by plant surface microorganisms.The leaf epidermal waxy matter content and the lipid composition of the epidermal membrane covering the plant surface play important roles in the non-stomatal adsorption of indoor air pollutants.The leaf margin of a plant is an ecological environment containing various microbial communities.The endophytic and inoculated microbiota in plant buds and leaves can remove VOCs(formaldehyde and BTEX).Formaldehyde can be directly absorbed by plant leaves and converted into organic acids,sugars,CO_(2) and H_(2)O by microbes.Bioremediation of indoor VOCs is usually inefficient,leading to plant toxicity or residual chemical substance volatilisation through leaves,followed by secondary pollution.Therefore,plants must be inoculated with microorganisms to improve the efficiency of plant degradation of VOCs.However,the effectiveness of interfoliar microbial removal remains largely unknown and several microorganisms are not culturable.Therefore,methods for collecting,identifying,and culturing microorganisms must be developed.As the leaf space is a relatively unstable environment,the degradation of VOCs by rhizosphere microorganisms is equally important,and formaldehyde is absorbed more by rhizosphere microorganisms at night.The inoculation of bacteria into the rhizosphere improves the efficiency of plants in degrading VOCs.However,most of these studies were conducted in simulation chambers.To ensure the authenticity of these conclusions,the ability of plants to remove indoor air pollutants must be further verified in real situations.Conclusions Plant purification is an economical,environment-friendly,and sustainable remediation technology.This review summarises the mechanisms of VOC plant degradation and presents its limitations.Simultaneously,it briefly puts forward a plant selection scheme according to different temperatures,light,and specific VOCs that can be absorbed to choose the appropriate plant species.However,some studies have denied the purification effect of plants and proposed that numerous plants are required to achieve indoor ventilation effects.Therefore,determining the ability of plants to remove indoor VOCs requires a combination of realistic and simulated scenarios.Recommendations and perspectives Plants and related microorganisms play an important role in improving indoor air quality,therefore,the effect of plants and the related microorganisms on improving indoor air quality must be studied further and the effect of plants on indoor VOCs will be the focus of future research.