N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the bra...N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the brain. Previous studies have paid little attention to the role of the N-methyl-D-aspartate receptor subunit 1 (NR1) in neurogenesis in the hippocampus of schizophrenia. A mouse model of schizophrenia was established by intraperitoneal injection of 0.6 mg/kg MK-801, once a day, for 14 days. In N-methyl-D-aspartate-treated mice, N-methyl-D-aspartate was administered by intracerebroventricular injection in schizophrenia mice on day 15. The number of NR1-, Ki67- or BrdU-immunoreactive cells in the dentate gyrus was measured by immunofluorescence staining. Our data showed the number of NR1-immunoreactive cells increased along with the decreasing numbers of BrdU- and Ki67-immunoreactive cells in the schizophrenia groups compared with the control group. N-methyl-D-aspartate could reverse the above changes. These results indicated that NR1 can regulate neurogenesis in the hippocampal dentate gyrus of schizophrenia mice, supporting NR1 as a promising therapeutic target in the treatment of schizophrenia. This study was approved by the Experimental Animal Ethics Committee of the Ningxia Medical University, China (approval No. 2014-014) on March 6, 2014.展开更多
BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid...BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid receptors, over-excitation can cause neuronal apoptosis. Calcitonin gene related peptide has a strongly biological activity. On one hand, it can protect ischemic neurons through inhibiting the expression of NMDAR1 mRNA; on the other hand, it can play the protective effect through down-regulating the expression of NMDAR1 mRNA by exogenous calcitonin gene related peptide. OBJECTIVE: To observe the expression of NMDAR1 and the regulatory effect of calcitonin gene related peptide on the expression of NMDAR1 mRNA and protein in the cerebral cortex of rats with focal cerebral ischemia/reperfusion (I/R). DESIGN: Randomized controlled animal study. SETTING: China Medical University. MATERIALS: A total of 216 healthy male Wistar rats, general grade, weighing 250-280 g, were selected in this study. Twelve rats were randomly selected to regard as control group; meanwhile, other 204 rats were used to establish middle cerebral artery occlusion/reperfusion (MACO) models. The main reagents were detailed as follows: calcitonin gene related peptide (Sigma Company); calcitonin gene related peptide kit (Boster Company); antibody Ⅰ, Ⅱ and antibody β-actin Ⅰ, Ⅱ of NMDAR1 mRNA and chemiluminescence reagent (Santa Cruz Company, USA). METHODS: The experiment was carried out in the Laboratory of Neurobiology of China Medical University from August 2005 to June 2006. ① Right MCAO models of rats were established to cause focal ischemia and scored based on Zea Longa five-grade scale. If the scores were 1, 2 and 3 after wakefulness, the MACO models were established successfully and involved in the experiment. A total of 120 rats with successful modeling were randomly divided into I/R group and administration group with 60 in each group. All rats in the both groups were observed at five time points, including 6, 12, 24, 48 and 72 hours after reperfusion and after 2-hour ischemia, with 12 experimental animals at each time point. Six rats were prepared for detection of hybridization in situ, and the other 6 were used for Western blotting histochemical detection. Rats in the control group were opened their skin to separate common carotid artery and not treated with line and drugs. In addition, rats in the I/R group were treated with 1 mL saline at 2 hours after focal cerebral ischemia, and then, rats in the administration group were treated with 1 mL (1 g/L) calcitonin gene related peptide at 2 hours after focal cerebral ischemia. ② The expression of NMDAR1 mRNA was detected with hybridization in situ at various time points; moreover, the expression of NMDAR1 protein was measured with Western blotting method at various time points. The results were analyzed with Metamoph imaging analytical system. MAIN OUTCOME MEASURES: The expression of NMDAR1 mRNA and its protein in cortical neurons of rats at various time points. RESULTS: A total of 84 rats were excluded because of non-symptoms, exanimation or death; and then, 132 rats were involved in the final analysis. The expression of NMDAR1 mRNA and its protein in cortical neurons of rats in the control group was 0.205±0.001 and 0.184±0.001, respectively; after I/R, expression of NMDAR1 mRNA and its protein was up-regulated, especially, expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.245±0.003, 0.287±0.004, 0.354±0.008, 0.284±0.002 and 0.217±0.006, respectively; moreover, expression of protein at 6, 12, 24, 48 and 72 hours was 0.222±0.003, 0.261±0.028, 0.311±0.004, 0.259±0.013 and 0.210±0.008, respectively. There was significant difference between the two groups (0.205±0.001, P < 0.01). The expression was up-related in the former 24 hours, reached peak at 24 hours, down-regulated, and decreased to the level of control group at 72 hours. Except 72 hours, the expression of NMDAR1 mRNA and its protein was lower in administration group than that in I/R group at other four time points. In addition, the expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.223±0.005, 0.243±0.001, 0.292±0.002, 0.250±0.003 and 0.213±0.003, respectively; moreover, the expression of protein at 6, 12, 24, 48 and 72 hours was 0.216±0.006, 0.245±0.025, 0.276±0.003, 0.241±0.045 and 0.202±0.013, respectively. There was significant difference at various time points (P < 0.05). CONCLUSION: The expressions of NMDAR1 mRNA and its protein of peripheral cortical neurons are up-related in ischemic area after focal cerebral I/R. Meanwhile, exogenous calcitonin gene related peptide can protect cortical neurons through inhibiting expression of NMDAR1 mRNA and its protein after focal cerebral I/R.展开更多
[Objective] The research aimed to study the effects of microwave on the chick embryo development and the cognitive function of chickling. [Method] The microwave which was transmitted by the permatron and was 2 450 MHz...[Objective] The research aimed to study the effects of microwave on the chick embryo development and the cognitive function of chickling. [Method] The microwave which was transmitted by the permatron and was 2 450 MHz was used to simulate the microwave radiation source to radiate the hatching eggs until the chickling was hatched out. The disposable passive avoidance learning and RT-PCR were respectively used to detect the influences of microwave on the cognitive function of chickling and the expression amounts of NMDA receptor NR1 and NR2 subunits. [Result] After the microwave radiation,the avoidance rate of exposed group was significantly lower than that in the control group. Especially the avoidance rate of highest radiation intensity group was extremely significantly lower than that in the control group. Meanwhile,the body weights of two groups of chickling in the exposed group increased,and the hatching time in one group increased. Via RT-PCR analysis,the expression amount of NR2 subunit increased on the 10th day and the 15th day. The expression amount of NR1 subunit only decreased on the 15th day. [Conclusion] The microwave had the certain influence on the individual development. By changing the structure composition and function of NMDA receptor in the endbrain,the microwave made the self-regulation ability of chickling decline,which had the certain damage on the cognitive function.展开更多
Objective To study the effect of salicylate on the expression and function of NMDA receptors in spiral ganglion neurons (SGNs). Methods The mRNA of NR1 subunit of NMDA receptor in modiolus tissues were detected by R...Objective To study the effect of salicylate on the expression and function of NMDA receptors in spiral ganglion neurons (SGNs). Methods The mRNA of NR1 subunit of NMDA receptor in modiolus tissues were detected by Real time fluorescence quantitative PCR (FQ-PCR). NMDA receptor whole-cell currents were recorded using patch clamp in acute isolated SGNs. Results Compared with the control group, salicylate significantly increased the mRNA level of NR1 subunit in SGNs. NMDA of concentrations ranging from 0.1 mM to 10 mM evoked no current in SGNs. NMDA (0. 1mM and 0.5 mM) applied with salicylate (5 mM), however, induced inward currents (212.6±15.2pA, n=5; 607.9±44.3pA, n=5) in a dose-dependent manner, which could be inhibited by APV. Salicylate alone did not produce any current in SGNs. Conclusion Salicylate increases the expression of NMDA receptors and facilitates the currents mediated by NMDA receptors in SGNs.展开更多
Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bus...Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bushen Tiansui decoction is effective against amyloid beta(Aβ) toxicity,we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer's disease.To test this hypothesis,we used a previously established animal model of Alzheimer's disease,that is,microinjection of aggregated Aβ25–35 into the bilateral brain ventricles of Sprague-Dawley rats.We found that long-term(28 days) oral administration of Bushen Tiansui decoction(0.563,1.688,and 3.375 g/m L;4 m L/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins,including postsynaptic density protein 95,the N-methyl-D-aspartate receptor 2 B subunit,and Shank1.These results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins.Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze(i.e.,increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aβ25–35 compared with those measures in untreated Aβ_(25–35)-injected rats.Overall,these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted.展开更多
Objective Glycine acts as a co-agonist for the activation of N-methyl-D-aspartate receptors (NMDARs) by binding to glycine sites, thus potentiating glutamate-elicited responses and inhibiting NMDAR desensitization i...Objective Glycine acts as a co-agonist for the activation of N-methyl-D-aspartate receptors (NMDARs) by binding to glycine sites, thus potentiating glutamate-elicited responses and inhibiting NMDAR desensitization in a dose-dependent manner. The present study aimed to characterize the glycine-dependent inactivation of NMDARs and to explore its pathophysiological significance. Methods Primary hippocampal cell cultures from embryonic days 17-18 rats were treated with NMDA or NMDA plus glycine. Patch-clamp recording and intracellular Ca 2+ imaging were performed to test the effects of glycine on NMDA-activated currents and increase of intracellular free Ca 2+ respectively. Immunofluorescence staining was conducted to examine NR1 internalization. Cell damage was tested with MTT method and lactate dehydrogenase leakage. Results Glycine reduced the peak current and Ca 2+ influx elicited by NMDA application at concentrations ≥300 μmol/L. This is a novel suppressive influence of glycine on NMDAR function, since it occurs via the NMDAR glycine-binding site, in contrast to the classic suppression, which occurs through the binding of glycine to glycine receptors. The level of membrane NMDARs was measured to evaluate whether internalization was involved. Immunohistochemical labeling showed that incubation with high concentrations of NMDA plus glycine did not change the expression of NMDARs on the cell surface when compared to the expression without glycine; hence the possibility of NMDAR internalization primed by glycine binding was excluded. Conclusion In summary, the novel suppressive effect of glycine on NMDARs was mediated via binding to the glycine site of the NMDAR and not by activation of the strychnine-sensitive glycine-receptor-gated chloride channel or by the internalization of NMDARs. The inhibitory influence of glycine on NMDARs adds a new insight to our knowledge of the complexity of synaptic transmission.展开更多
基金supported by the National Natural Science Foundation of China,No.81160169(to JL),81460214(to JL),31660270(to JD),31460255(to JD)the Natural Science Foundation of Ningxia Hui Autonomous Region of China,No.2018AAC02005(to JL)
文摘N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the brain. Previous studies have paid little attention to the role of the N-methyl-D-aspartate receptor subunit 1 (NR1) in neurogenesis in the hippocampus of schizophrenia. A mouse model of schizophrenia was established by intraperitoneal injection of 0.6 mg/kg MK-801, once a day, for 14 days. In N-methyl-D-aspartate-treated mice, N-methyl-D-aspartate was administered by intracerebroventricular injection in schizophrenia mice on day 15. The number of NR1-, Ki67- or BrdU-immunoreactive cells in the dentate gyrus was measured by immunofluorescence staining. Our data showed the number of NR1-immunoreactive cells increased along with the decreasing numbers of BrdU- and Ki67-immunoreactive cells in the schizophrenia groups compared with the control group. N-methyl-D-aspartate could reverse the above changes. These results indicated that NR1 can regulate neurogenesis in the hippocampal dentate gyrus of schizophrenia mice, supporting NR1 as a promising therapeutic target in the treatment of schizophrenia. This study was approved by the Experimental Animal Ethics Committee of the Ningxia Medical University, China (approval No. 2014-014) on March 6, 2014.
文摘BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid receptors, over-excitation can cause neuronal apoptosis. Calcitonin gene related peptide has a strongly biological activity. On one hand, it can protect ischemic neurons through inhibiting the expression of NMDAR1 mRNA; on the other hand, it can play the protective effect through down-regulating the expression of NMDAR1 mRNA by exogenous calcitonin gene related peptide. OBJECTIVE: To observe the expression of NMDAR1 and the regulatory effect of calcitonin gene related peptide on the expression of NMDAR1 mRNA and protein in the cerebral cortex of rats with focal cerebral ischemia/reperfusion (I/R). DESIGN: Randomized controlled animal study. SETTING: China Medical University. MATERIALS: A total of 216 healthy male Wistar rats, general grade, weighing 250-280 g, were selected in this study. Twelve rats were randomly selected to regard as control group; meanwhile, other 204 rats were used to establish middle cerebral artery occlusion/reperfusion (MACO) models. The main reagents were detailed as follows: calcitonin gene related peptide (Sigma Company); calcitonin gene related peptide kit (Boster Company); antibody Ⅰ, Ⅱ and antibody β-actin Ⅰ, Ⅱ of NMDAR1 mRNA and chemiluminescence reagent (Santa Cruz Company, USA). METHODS: The experiment was carried out in the Laboratory of Neurobiology of China Medical University from August 2005 to June 2006. ① Right MCAO models of rats were established to cause focal ischemia and scored based on Zea Longa five-grade scale. If the scores were 1, 2 and 3 after wakefulness, the MACO models were established successfully and involved in the experiment. A total of 120 rats with successful modeling were randomly divided into I/R group and administration group with 60 in each group. All rats in the both groups were observed at five time points, including 6, 12, 24, 48 and 72 hours after reperfusion and after 2-hour ischemia, with 12 experimental animals at each time point. Six rats were prepared for detection of hybridization in situ, and the other 6 were used for Western blotting histochemical detection. Rats in the control group were opened their skin to separate common carotid artery and not treated with line and drugs. In addition, rats in the I/R group were treated with 1 mL saline at 2 hours after focal cerebral ischemia, and then, rats in the administration group were treated with 1 mL (1 g/L) calcitonin gene related peptide at 2 hours after focal cerebral ischemia. ② The expression of NMDAR1 mRNA was detected with hybridization in situ at various time points; moreover, the expression of NMDAR1 protein was measured with Western blotting method at various time points. The results were analyzed with Metamoph imaging analytical system. MAIN OUTCOME MEASURES: The expression of NMDAR1 mRNA and its protein in cortical neurons of rats at various time points. RESULTS: A total of 84 rats were excluded because of non-symptoms, exanimation or death; and then, 132 rats were involved in the final analysis. The expression of NMDAR1 mRNA and its protein in cortical neurons of rats in the control group was 0.205±0.001 and 0.184±0.001, respectively; after I/R, expression of NMDAR1 mRNA and its protein was up-regulated, especially, expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.245±0.003, 0.287±0.004, 0.354±0.008, 0.284±0.002 and 0.217±0.006, respectively; moreover, expression of protein at 6, 12, 24, 48 and 72 hours was 0.222±0.003, 0.261±0.028, 0.311±0.004, 0.259±0.013 and 0.210±0.008, respectively. There was significant difference between the two groups (0.205±0.001, P < 0.01). The expression was up-related in the former 24 hours, reached peak at 24 hours, down-regulated, and decreased to the level of control group at 72 hours. Except 72 hours, the expression of NMDAR1 mRNA and its protein was lower in administration group than that in I/R group at other four time points. In addition, the expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.223±0.005, 0.243±0.001, 0.292±0.002, 0.250±0.003 and 0.213±0.003, respectively; moreover, the expression of protein at 6, 12, 24, 48 and 72 hours was 0.216±0.006, 0.245±0.025, 0.276±0.003, 0.241±0.045 and 0.202±0.013, respectively. There was significant difference at various time points (P < 0.05). CONCLUSION: The expressions of NMDAR1 mRNA and its protein of peripheral cortical neurons are up-related in ischemic area after focal cerebral I/R. Meanwhile, exogenous calcitonin gene related peptide can protect cortical neurons through inhibiting expression of NMDAR1 mRNA and its protein after focal cerebral I/R.
基金Supported by Suzhou City Science and Technology Bureau Item(YJS0904)~~
文摘[Objective] The research aimed to study the effects of microwave on the chick embryo development and the cognitive function of chickling. [Method] The microwave which was transmitted by the permatron and was 2 450 MHz was used to simulate the microwave radiation source to radiate the hatching eggs until the chickling was hatched out. The disposable passive avoidance learning and RT-PCR were respectively used to detect the influences of microwave on the cognitive function of chickling and the expression amounts of NMDA receptor NR1 and NR2 subunits. [Result] After the microwave radiation,the avoidance rate of exposed group was significantly lower than that in the control group. Especially the avoidance rate of highest radiation intensity group was extremely significantly lower than that in the control group. Meanwhile,the body weights of two groups of chickling in the exposed group increased,and the hatching time in one group increased. Via RT-PCR analysis,the expression amount of NR2 subunit increased on the 10th day and the 15th day. The expression amount of NR1 subunit only decreased on the 15th day. [Conclusion] The microwave had the certain influence on the individual development. By changing the structure composition and function of NMDA receptor in the endbrain,the microwave made the self-regulation ability of chickling decline,which had the certain damage on the cognitive function.
基金supported by a grant from National Nature Science Fund of China(No.81060082,30860098)Nature Science Fund of Guangxi(No.2011jjA40056)to Jiping Su
文摘Objective To study the effect of salicylate on the expression and function of NMDA receptors in spiral ganglion neurons (SGNs). Methods The mRNA of NR1 subunit of NMDA receptor in modiolus tissues were detected by Real time fluorescence quantitative PCR (FQ-PCR). NMDA receptor whole-cell currents were recorded using patch clamp in acute isolated SGNs. Results Compared with the control group, salicylate significantly increased the mRNA level of NR1 subunit in SGNs. NMDA of concentrations ranging from 0.1 mM to 10 mM evoked no current in SGNs. NMDA (0. 1mM and 0.5 mM) applied with salicylate (5 mM), however, induced inward currents (212.6±15.2pA, n=5; 607.9±44.3pA, n=5) in a dose-dependent manner, which could be inhibited by APV. Salicylate alone did not produce any current in SGNs. Conclusion Salicylate increases the expression of NMDA receptors and facilitates the currents mediated by NMDA receptors in SGNs.
基金supported by the National Natural Science Foundation of China,No.81373705the Natural Science Foundation of Hunan Province in China,No.13JJ3030
文摘Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bushen Tiansui decoction is effective against amyloid beta(Aβ) toxicity,we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer's disease.To test this hypothesis,we used a previously established animal model of Alzheimer's disease,that is,microinjection of aggregated Aβ25–35 into the bilateral brain ventricles of Sprague-Dawley rats.We found that long-term(28 days) oral administration of Bushen Tiansui decoction(0.563,1.688,and 3.375 g/m L;4 m L/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins,including postsynaptic density protein 95,the N-methyl-D-aspartate receptor 2 B subunit,and Shank1.These results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins.Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze(i.e.,increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aβ25–35 compared with those measures in untreated Aβ_(25–35)-injected rats.Overall,these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted.
基金supported by Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Objective Glycine acts as a co-agonist for the activation of N-methyl-D-aspartate receptors (NMDARs) by binding to glycine sites, thus potentiating glutamate-elicited responses and inhibiting NMDAR desensitization in a dose-dependent manner. The present study aimed to characterize the glycine-dependent inactivation of NMDARs and to explore its pathophysiological significance. Methods Primary hippocampal cell cultures from embryonic days 17-18 rats were treated with NMDA or NMDA plus glycine. Patch-clamp recording and intracellular Ca 2+ imaging were performed to test the effects of glycine on NMDA-activated currents and increase of intracellular free Ca 2+ respectively. Immunofluorescence staining was conducted to examine NR1 internalization. Cell damage was tested with MTT method and lactate dehydrogenase leakage. Results Glycine reduced the peak current and Ca 2+ influx elicited by NMDA application at concentrations ≥300 μmol/L. This is a novel suppressive influence of glycine on NMDAR function, since it occurs via the NMDAR glycine-binding site, in contrast to the classic suppression, which occurs through the binding of glycine to glycine receptors. The level of membrane NMDARs was measured to evaluate whether internalization was involved. Immunohistochemical labeling showed that incubation with high concentrations of NMDA plus glycine did not change the expression of NMDARs on the cell surface when compared to the expression without glycine; hence the possibility of NMDAR internalization primed by glycine binding was excluded. Conclusion In summary, the novel suppressive effect of glycine on NMDARs was mediated via binding to the glycine site of the NMDAR and not by activation of the strychnine-sensitive glycine-receptor-gated chloride channel or by the internalization of NMDARs. The inhibitory influence of glycine on NMDARs adds a new insight to our knowledge of the complexity of synaptic transmission.