Objective The effects of interactions between genetic and environmental factors on the noise-induced hearing loss(NIHL)are still unclear.This study aimed to assess interactions among gene polymorphisms,noise metrics,a...Objective The effects of interactions between genetic and environmental factors on the noise-induced hearing loss(NIHL)are still unclear.This study aimed to assess interactions among gene polymorphisms,noise metrics,and lifestyles on the risk of NIHL.Methods A case-control study was conducted using 307 patients with NIHL and 307 matched healthy individuals from five manufacturing industries.General demographic data,lifestyle details,and noise exposure levels were recorded.The Kompetitive allele-specific polymerase chain reaction(KASP)was used to analyze the genotypes of 18 SNPs.Results GMDR model demonstrated a relevant interaction between NRN1 rs3805789 and CAT rs7943316(P=0.0107).Subjects with T allele of rs3805789 or T allele of rs7943316 had higher risks of NIHL than those with the SNP pair of rs3805789-CC and rs7943316-AA(P<0.05).There was an interaction among rs3805789,rs7943316,and kurtosis(P=0.0010).Subjects exposed to complex noise and carrying both rs3805789-CT and rs7943316-TT or rs3805789-CT/TT and rs7943316-AA had higher risks of NIHL than those exposed to steady noise and carrying both rs3805789-CC and rs7943316-AA(P<0.05).The best six-locus model involving NRN1 rs3805789,CAT rs7943316,smoking,video volume,physical exercise,and working pressure for the risk of NIHL was found to be the interaction(P=0.0010).An interaction was also found among smoking,video volume,physical exercise,working pressure,and kurtosis(P=0.0107).Conclusion Concurrence of NRN1 and CAT constitutes a genetic risk factor for NIHL.Complex noise exposure significantly increases the risk of NIHL in subjects with a high genetic risk score.Interactions between genes and lifestyles as well as noise metrics and lifestyles affect the risk of NIHL.展开更多
A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports a...A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.展开更多
基金supported by Zhejiang Key Research and Development Program of China[No.2015C03039,No.20152013A01]Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents,China+2 种基金Zhejiang Health Innovative Talent Training Project of Chinageneral scientific research project of Zhejiang Science and Technology Department of China[No.Y201941671]Natural Science Foundation of Zhejiang Provincial,China[LY18H260002]。
文摘Objective The effects of interactions between genetic and environmental factors on the noise-induced hearing loss(NIHL)are still unclear.This study aimed to assess interactions among gene polymorphisms,noise metrics,and lifestyles on the risk of NIHL.Methods A case-control study was conducted using 307 patients with NIHL and 307 matched healthy individuals from five manufacturing industries.General demographic data,lifestyle details,and noise exposure levels were recorded.The Kompetitive allele-specific polymerase chain reaction(KASP)was used to analyze the genotypes of 18 SNPs.Results GMDR model demonstrated a relevant interaction between NRN1 rs3805789 and CAT rs7943316(P=0.0107).Subjects with T allele of rs3805789 or T allele of rs7943316 had higher risks of NIHL than those with the SNP pair of rs3805789-CC and rs7943316-AA(P<0.05).There was an interaction among rs3805789,rs7943316,and kurtosis(P=0.0010).Subjects exposed to complex noise and carrying both rs3805789-CT and rs7943316-TT or rs3805789-CT/TT and rs7943316-AA had higher risks of NIHL than those exposed to steady noise and carrying both rs3805789-CC and rs7943316-AA(P<0.05).The best six-locus model involving NRN1 rs3805789,CAT rs7943316,smoking,video volume,physical exercise,and working pressure for the risk of NIHL was found to be the interaction(P=0.0010).An interaction was also found among smoking,video volume,physical exercise,working pressure,and kurtosis(P=0.0107).Conclusion Concurrence of NRN1 and CAT constitutes a genetic risk factor for NIHL.Complex noise exposure significantly increases the risk of NIHL in subjects with a high genetic risk score.Interactions between genes and lifestyles as well as noise metrics and lifestyles affect the risk of NIHL.
基金supported by the National key research and development program of China(No.2021YFB2900401)by the National Natural Science Foundation of China(No.61861046)+1 种基金the key Natural Science Foundation of shenzhen(No.JCYJ20220818102209020)the key research and development program of shenzhen(No.ZDSYS20210623091807023)。
文摘A novel dual-band ISGW cavity filter with enhanced frequency selectivity is proposed in this paper by utilizing a multi-mode coupling topology.Its cavity is designed to control the number of modes,and then the ports are determined by analyzing the coupling relationship between these selected modes.By synthesizing the coupling matrix of the filter,a nonresonating node(NRN)structure is introduced to flexibly tune the frequency of modes,which gets a dualband and quad-band filtering response from a tri-band filter no the NRN.Furthermore,a frequency selective surface(FSS)has been newly designed as the upper surface of the cavity,which significantly improves the bad out-of-band suppression and frequency selectivity that often exists in most traditional cavity filter designs and measurements.The results show that its two center frequencies are f01=27.50 GHz and f02=32.92GHz,respectively.Compared with the dual-band filter that there is no the FSS metasurface,the out-of-band suppression level is improved from measured 5 dB to18 dB,and its finite transmission zero(FTZ)numbers is increased from measured 1 to 4 between the two designed bands.Compared with the tri-band and quadband filter,its passband bandwidth is expanded from measured 1.17%,1.14%,and 1.13% or 1.31%,1.50%,0.56%,and 0.57% to 1.71% and 1.87%.In addition,the filter has compact,small,and lightweight characteristics.