The mechanism of the precursor dehydration route was revealed for the synthesis of NTE c-ZrW_ 1.6 Mo_ 0.4 O_8. The hydrate precursor was dehydrated at 473 K and transformed to a NTE cubic compound above 800 K. A nov...The mechanism of the precursor dehydration route was revealed for the synthesis of NTE c-ZrW_ 1.6 Mo_ 0.4 O_8. The hydrate precursor was dehydrated at 473 K and transformed to a NTE cubic compound above 800 K. A novel intermediate phase o-ZrW_ 1.6 Mo_ 0.4 O_8 occurs between the temperature range of 573—800 K. The XRD pattern of novel intermediate was refined with the structural model of LT-ZrMo_2O_8 by using Rietveld method. The residuals are R_ wp =7.80% and R_p=5.79%. The space group is Pmn2_1 and the lattice parameters are a=0.5917(4) nm, b=0.7273(4) nm, c=0.9148(6) nm, and Z=2.展开更多
This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer...This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer modeling techniques. Clusters undergo deformation as a result of the slowing down;they may also become epitaxial with the substrate and maintain their core-shell structure. A detailed analysis of the effects of the cluster-surface interaction is conducted over a realistic size and energy range, and a model is created to show how clusters accumulate. It is discovered that both the silver shells and the cobalt cluster cores exhibit limited epitaxy with the substrate, and that the contact produced is only a few atomic layers thick. The effect is higher for Ag shells than for Co cores, and it is not very energy dependent.展开更多
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 98710 0 6)
文摘The mechanism of the precursor dehydration route was revealed for the synthesis of NTE c-ZrW_ 1.6 Mo_ 0.4 O_8. The hydrate precursor was dehydrated at 473 K and transformed to a NTE cubic compound above 800 K. A novel intermediate phase o-ZrW_ 1.6 Mo_ 0.4 O_8 occurs between the temperature range of 573—800 K. The XRD pattern of novel intermediate was refined with the structural model of LT-ZrMo_2O_8 by using Rietveld method. The residuals are R_ wp =7.80% and R_p=5.79%. The space group is Pmn2_1 and the lattice parameters are a=0.5917(4) nm, b=0.7273(4) nm, c=0.9148(6) nm, and Z=2.
文摘This paper examines the interface development between a single crystalline Ag matrix and core-shell AgnCom nanoclusters that have been deposited with energies varying between 0.25 eV and 1.5 eV per atom using computer modeling techniques. Clusters undergo deformation as a result of the slowing down;they may also become epitaxial with the substrate and maintain their core-shell structure. A detailed analysis of the effects of the cluster-surface interaction is conducted over a realistic size and energy range, and a model is created to show how clusters accumulate. It is discovered that both the silver shells and the cobalt cluster cores exhibit limited epitaxy with the substrate, and that the contact produced is only a few atomic layers thick. The effect is higher for Ag shells than for Co cores, and it is not very energy dependent.