[Objective] The aim of this study is to reveal the salt resistance of castor. [Method] Under salt stress, the growth, osmotic potential, chlorophyll fluorescence parameters, Na^+ and K^+ uptakes and transports in the ...[Objective] The aim of this study is to reveal the salt resistance of castor. [Method] Under salt stress, the growth, osmotic potential, chlorophyll fluorescence parameters, Na^+ and K^+ uptakes and transports in the seedlings of two Ricinus communis varieties (cultivar castor ‘Zibi 6’ and wild castor which grew naturally in coastal saline-alkali land), were comparatively studied. [Result] Wild castor preformed better in halophilism than that of cultivar castor Zibi 6 under the NaCl treatment. One of the salt tolerant mechanisms of castor is to improve K^+ uptake and transport to overground portion, thus to maintain K^+/Na^+ homeostasis in leaves; on the other hand, the high stability of Photoreaction System Ⅱ (PS Ⅱ) plays a key role in maintaining the leaf photosynthetic rate under salt stress. [Conclusion] The results of this study provided theoretical basis for the extension and application of castor in saline beach.展开更多
Salinity is a global challenge to agricultural production. Understanding Na^+ sensing and transport in plants under salt stress will be of benefit for breeding robustly salt-tolerant crop species. In this review, firs...Salinity is a global challenge to agricultural production. Understanding Na^+ sensing and transport in plants under salt stress will be of benefit for breeding robustly salt-tolerant crop species. In this review, first, possible salt stress sensor candidates and the root meristem zone as a tissue harboring salt stress-sensing components are proposed. Then,the importance of Na^+ exclusion and vacuolar Na^+ sequestration in plant overall salt tolerance is highlighted. Other Na^+ regulation processes, including xylem Na^+ loading and unloading, phloem Na^+ recirculation, and Na^+ secretion, are discussed and summarized.Along with a summary of Na^+ transporters and channels, the molecular regulation of Na^+ transporters and channels in response to salt stress is discussed. Finally, some largely neglected issues in plant salt stress tolerance, including Na^+ concentration in cytosol and the role of Na^+ as a nutrient, are reviewed and discussed.展开更多
The key for rice plant survival under Na Cl salt stress is maintaining a high K^+/Na^+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in br...The key for rice plant survival under Na Cl salt stress is maintaining a high K^+/Na^+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K^+/Na^+ ratios. Seventeen SSR markers reported to be associated with K^+/Na^+ ratio were used to screen the accessions. Five SSR markers(RM8053, RM345, RM318, RM253 and RM7075) could differentiate accessions classified based on their K^+/Na^+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K^+/Na^+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.展开更多
Salt stress contains osmotic and ionic stress, while iso-osmotic polyethylene glycol (PEG) has only osmotic stress. This study aimed to compare the different effects on the activity of H+-ATPase, proton pump and Na...Salt stress contains osmotic and ionic stress, while iso-osmotic polyethylene glycol (PEG) has only osmotic stress. This study aimed to compare the different effects on the activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings between osmotic and ionic stress. Species of salt tolerant Malus zumi, middle salt tolerant Malus xiaojinensis and salt sensitive Malus baccata were used as experimental materials. Malus seedlings were treated with NaCl and iso-osmotic PEG stress. The activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in Malus seedlings were obviously increased under salt stress, and those in salt-tolerant species increased more. Under the same NaCl concentration, the activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in salt-tolerant species were all obviously higher than those in salt-sensitive one. Higher Na+/H+antiport activity of plasmolemma and tonoplast in salt-tolerant species could help to extrude and compartmentalize sodium in roots under salt stress. The ascent rate of activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings under the three salt concentration stress was all obviously higher than that under the iso-osmotic PEG stress. It indicated that the sodium ion effect had more stimulation on the activity of H+-ATPase, proton pump and Na+/H+antiport in salt-tolerant species, and salt-tolerant species has higher capability of sodium extrusion and compartmentalization in roots and is therefore more salt tolerant.展开更多
Based on dynastic period division and AMS ^14 C dating performed on the sedimentary layers at Zhongba and Yuxi sites,and also the analysis of Na,Ca and Mg of 201 sedimentary samples from Zhongba site and that of Ca an...Based on dynastic period division and AMS ^14 C dating performed on the sedimentary layers at Zhongba and Yuxi sites,and also the analysis of Na,Ca and Mg of 201 sedimentary samples from Zhongba site and that of Ca and Na in 47 sedimentary samples from Yuxi by using an inductively coupled plasma-mass spectrometry(ICP),we found that there were 35 time periods when the contents of Ca and Na were reversely correlated,i.e.whenever the content of Ca was the highest,the content of Na was the lowest,and vice versa. Among them,there were 21 time periods when the content of Ca was the highest,and Na was the lowest,indicating that there were about 21 prosperous periods of ancient salt production at Zhongba site since 3000BC.Other 14 time periods with the peak values of Na while the low values of Ca indicate 14 declined periods of salt production at Zhongba site since 3000BC.The conclusion obtained from the reverse relationship between Ca and Na contents in this paper is consistent with that"the salt production at Zhongba site started in the new stone age,developed in the Xia and Shang dynasties,reached at the heyday in periods from the Western Zhou to the Han Dynasties,maintained stable to develop in the Tang and the Song dynasties,and gradually declined after the Song Dynasty because the sea salt were conveyed into Sichuan region,however,still had production in the 1970s-1980s",educed from archeological exploration.All the above mentioned results indicate that there is a reverse relationship obviously between the contents of Na and Ca in sediments at Zhongba site for ancient salt production,which can be used to reveal the process of rise and decline of ancient salt industry at Zhongba site.展开更多
Li brines are the primary resources for Li salt industries.Evaporation is necessary to concentrate Li due to its low level of concentration in raw brines.The salt sequences during the evaporation of Li brines,especial...Li brines are the primary resources for Li salt industries.Evaporation is necessary to concentrate Li due to its low level of concentration in raw brines.The salt sequences during the evaporation of Li brines,especially the behavior of Li salts,represent key data for solar technologies.However,chemists cannot use any phase diagram to estimate Li salt sequences during evaporation at 25℃.The thermodynamic model proposed by us in 2003 represents the only tool for the prediction of equilibrium conditions during the evaporation of solutions containing Li^+,Na^+,K^+,Mg^2+/Cl^-,SO4^2-,and-H2O components at 25℃.In this paper,the predicted salt sequences of 20 brines are reported.The results indicate that (1) the first crystallized Li salt during evaporation of Li brine varies in brine composition;(2) lithium sulfate is crystallized in many cases initially for brines of magnesium sulfate subtype,while Db4 (Li2SO4 ·K2SO4 ) or Db3 (2Li2SO4 ·Na2SO4 ·K2SO4 ) appears first for sodium sulfate and magnesium sulfate subtypes with lower Mg/Li composition,and the final eutectic point is H+LiC+Lc+Ls+Car;(3) the final eutectic point is H+LiC+Lc+Car for brines of chloride type;and (4) Li content corresponding to the first crystallized Li salt is in the range of 0.43%-1%.These findings enhance our knowledge of Li chemistry and provide insights into solar pond technology of the Li-brine process.展开更多
文摘[Objective] The aim of this study is to reveal the salt resistance of castor. [Method] Under salt stress, the growth, osmotic potential, chlorophyll fluorescence parameters, Na^+ and K^+ uptakes and transports in the seedlings of two Ricinus communis varieties (cultivar castor ‘Zibi 6’ and wild castor which grew naturally in coastal saline-alkali land), were comparatively studied. [Result] Wild castor preformed better in halophilism than that of cultivar castor Zibi 6 under the NaCl treatment. One of the salt tolerant mechanisms of castor is to improve K^+ uptake and transport to overground portion, thus to maintain K^+/Na^+ homeostasis in leaves; on the other hand, the high stability of Photoreaction System Ⅱ (PS Ⅱ) plays a key role in maintaining the leaf photosynthetic rate under salt stress. [Conclusion] The results of this study provided theoretical basis for the extension and application of castor in saline beach.
基金supported by a Ph.D. scholarship provided by University of Tasmania (185466S9A),Australiathe Open Fund of State Key Laboratory of Tea Plant Biology Utilization at Anhui Agricultural University (SKLTOF20170112)
文摘Salinity is a global challenge to agricultural production. Understanding Na^+ sensing and transport in plants under salt stress will be of benefit for breeding robustly salt-tolerant crop species. In this review, first, possible salt stress sensor candidates and the root meristem zone as a tissue harboring salt stress-sensing components are proposed. Then,the importance of Na^+ exclusion and vacuolar Na^+ sequestration in plant overall salt tolerance is highlighted. Other Na^+ regulation processes, including xylem Na^+ loading and unloading, phloem Na^+ recirculation, and Na^+ secretion, are discussed and summarized.Along with a summary of Na^+ transporters and channels, the molecular regulation of Na^+ transporters and channels in response to salt stress is discussed. Finally, some largely neglected issues in plant salt stress tolerance, including Na^+ concentration in cytosol and the role of Na^+ as a nutrient, are reviewed and discussed.
基金supported by the research fund of Rural Development Administration, South Korea (Grant No. PJ012281)
文摘The key for rice plant survival under Na Cl salt stress is maintaining a high K^+/Na^+ ratio in its cells. Selection for salt tolerance rice genotypes based on phenotypic performance alone will delay in progress in breeding. Use of molecular markers in tandem with physiological studies will help in better identification of salt tolerant rice accessions. Eight rice accessions along with the check Dongjin were screened using 1/2 Yoshida solution with 50 mmol/L NaCl at the seedling stage. The accessions IT001158, IT246674, IT260533 and IT291341 were classified as salt tolerant based on their K^+/Na^+ ratios. Seventeen SSR markers reported to be associated with K^+/Na^+ ratio were used to screen the accessions. Five SSR markers(RM8053, RM345, RM318, RM253 and RM7075) could differentiate accessions classified based on their K^+/Na^+ ratios. Banding pattern of the accessions was scored compared to the banding pattern of Dongjin. The study differentiated accessions based on their association of K^+/Na^+ ratio with molecular markers which are very reliable. These markers can play a significant role in screening large set of rice germplasms for salt tolerance and also help in identification of high-yielding varieties with better salt tolerance. The salt tolerant accessions can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.
基金the financial support from the National Natural Science Foundation of China (39740027)the Special Fund for Agro-Scientific Research in the Public Interest of China (201203075)
文摘Salt stress contains osmotic and ionic stress, while iso-osmotic polyethylene glycol (PEG) has only osmotic stress. This study aimed to compare the different effects on the activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings between osmotic and ionic stress. Species of salt tolerant Malus zumi, middle salt tolerant Malus xiaojinensis and salt sensitive Malus baccata were used as experimental materials. Malus seedlings were treated with NaCl and iso-osmotic PEG stress. The activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in Malus seedlings were obviously increased under salt stress, and those in salt-tolerant species increased more. Under the same NaCl concentration, the activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in salt-tolerant species were all obviously higher than those in salt-sensitive one. Higher Na+/H+antiport activity of plasmolemma and tonoplast in salt-tolerant species could help to extrude and compartmentalize sodium in roots under salt stress. The ascent rate of activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings under the three salt concentration stress was all obviously higher than that under the iso-osmotic PEG stress. It indicated that the sodium ion effect had more stimulation on the activity of H+-ATPase, proton pump and Na+/H+antiport in salt-tolerant species, and salt-tolerant species has higher capability of sodium extrusion and compartmentalization in roots and is therefore more salt tolerant.
基金The Key Project of National Natural Science Foundation of China, No.90411015 University Doctoral Foundation of China, Grand No.20050284011+2 种基金 The Prior study project for Key Basic Scientific Issue of Nanjing University, Grand No. 0209005206 Open Foundation of the State Key Laboratory of Loess and Quaternary Geology from the Institute of Earth Environment, CAS, No.SKLLQG0503 Foundation of Modern Analyses Center of Nanjing University, No.0209001309.
文摘Based on dynastic period division and AMS ^14 C dating performed on the sedimentary layers at Zhongba and Yuxi sites,and also the analysis of Na,Ca and Mg of 201 sedimentary samples from Zhongba site and that of Ca and Na in 47 sedimentary samples from Yuxi by using an inductively coupled plasma-mass spectrometry(ICP),we found that there were 35 time periods when the contents of Ca and Na were reversely correlated,i.e.whenever the content of Ca was the highest,the content of Na was the lowest,and vice versa. Among them,there were 21 time periods when the content of Ca was the highest,and Na was the lowest,indicating that there were about 21 prosperous periods of ancient salt production at Zhongba site since 3000BC.Other 14 time periods with the peak values of Na while the low values of Ca indicate 14 declined periods of salt production at Zhongba site since 3000BC.The conclusion obtained from the reverse relationship between Ca and Na contents in this paper is consistent with that"the salt production at Zhongba site started in the new stone age,developed in the Xia and Shang dynasties,reached at the heyday in periods from the Western Zhou to the Han Dynasties,maintained stable to develop in the Tang and the Song dynasties,and gradually declined after the Song Dynasty because the sea salt were conveyed into Sichuan region,however,still had production in the 1970s-1980s",educed from archeological exploration.All the above mentioned results indicate that there is a reverse relationship obviously between the contents of Na and Ca in sediments at Zhongba site for ancient salt production,which can be used to reveal the process of rise and decline of ancient salt industry at Zhongba site.
基金National Key R&D Program of China(2017YFC0602805)
文摘Li brines are the primary resources for Li salt industries.Evaporation is necessary to concentrate Li due to its low level of concentration in raw brines.The salt sequences during the evaporation of Li brines,especially the behavior of Li salts,represent key data for solar technologies.However,chemists cannot use any phase diagram to estimate Li salt sequences during evaporation at 25℃.The thermodynamic model proposed by us in 2003 represents the only tool for the prediction of equilibrium conditions during the evaporation of solutions containing Li^+,Na^+,K^+,Mg^2+/Cl^-,SO4^2-,and-H2O components at 25℃.In this paper,the predicted salt sequences of 20 brines are reported.The results indicate that (1) the first crystallized Li salt during evaporation of Li brine varies in brine composition;(2) lithium sulfate is crystallized in many cases initially for brines of magnesium sulfate subtype,while Db4 (Li2SO4 ·K2SO4 ) or Db3 (2Li2SO4 ·Na2SO4 ·K2SO4 ) appears first for sodium sulfate and magnesium sulfate subtypes with lower Mg/Li composition,and the final eutectic point is H+LiC+Lc+Ls+Car;(3) the final eutectic point is H+LiC+Lc+Car for brines of chloride type;and (4) Li content corresponding to the first crystallized Li salt is in the range of 0.43%-1%.These findings enhance our knowledge of Li chemistry and provide insights into solar pond technology of the Li-brine process.