期刊文献+
共找到819篇文章
< 1 2 41 >
每页显示 20 50 100
Manipulating Na occupation and constructing protective film of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) as long-term cycle stability cathode for sodium-ion batteries 被引量:1
1
作者 Yiran Sun Pengfei Zhou +7 位作者 Siyu Liu Zhongjun Zhao Yihao Pan Xiangyan Shen Xiaozhong Wu Jinping Zhao Junying Weng Jin Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期603-611,I0013,共10页
P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformati... P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs. 展开更多
关键词 Layered cathode Zn/Ti co-doping na occupation Electrolyte additive sodium-ion batteries
下载PDF
Natural Lignin:A Sustainable and Cost-Effective Electrode Material for High-Temperature Na-Ion Battery
2
作者 Yuqi She Xiwei Li +4 位作者 Yanqin Zheng Dong Chen Xianhong Rui Xuliang Lin Yanlin Qin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期1-8,共8页
Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic el... Rechargeable sodium-ion batteries usually suffer from accelerated electrode destruction at high temperatures and high synthesis costs of electrode materials.Therefore,it is highly desirable to explore novel organic electrodes considering their cost-effectiveness and large adaptability to volume changes.Herein,natural biomass,pristine lignin,is employed as the sodium-ion battery anodes,and their sodium storage performance is investigated at room temperature and 60℃.The lignin anodes exhibit excellent high-temperature sodium-ion battery performance.This mainly results from the generation of abundant reactive sites(C=O)due to the high temperature-induced homogeneous cleavage of the C_(β)-O bond in the lignin macromolecule.This work can inspire researchers to explore other natural organic materials for large-scale applications and high-value utilization in advanced energy storage devices. 展开更多
关键词 high-temperature performance LIGNIN na storage mechanism organic anode sodium-ion battery
下载PDF
Configuring single-layer MXene nanosheet onto natural wood fiber via C-Ti-C covalent bonds for high-stability Li-S batteries
3
作者 Yangyang Chen Yu Liao +5 位作者 Ying Wu Lei Li Zhen Zhang Sha Luo Yiqiang Wu Yan Qing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期701-711,I0016,共12页
Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and ... Lithium-sulfur batteries(LSBs)are considered promising candidates for next-generation battery technologies owing to their outstanding theoretical energy density and cost-effectiveness.However,the low conductivity and polysulfide shuttling effect of S cathodes severely hamper the practical performance of LSBs.Herein,in situ-generated single layer MXene nanosheet/hierarchical porous carbonized wood fiber(MX/PCWF)composites are prepared via a nonhazardous eutectic activation strategy coupled with pyrolysis-induced gas diffusion.The unique architecture,wherein single layer MXene nanosheets are constructed on carbonized wood fiber walls,ensures rapid polysulfide conversion and continuous electron transfer for redox reactions.The C-Ti-C bonds formed between MXene and PCWF can considerably expedite the conversion of polysulfides,effectively suppressing the shuttle effect.An impressive capacity of 1301.1 m A h g^(-1)at 0.5 C accompanied by remarkable stability is attained with the MX/PCWF host,as evidenced by the capacity maintenance of 722.6 m A h g^(-1)after 500 cycles.Notably,the MX/PCWF/S cathode can still deliver a high capacity of 886.8 m A h g^(-1)at a high S loading of 5.6 mg cm^(-2).The construction of two-dimensional MXenes on natural wood fiber walls offers a competitive edge over S-based cathode materials and demonstrates a novel strategy for developing high-performance batteries. 展开更多
关键词 Lithium-sulfur batteries s cathodes MXene nanosheets Wood fiber C-Ti-C bonds
下载PDF
Designing Conformal Electrode-electrolyte Interface by Semi-solid NaK Anode for Sodium Metal Batteries
4
作者 YIN Chunsen CHEN Zeyuan WANG Xiuli 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第4期533-543,共11页
Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf... Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode. 展开更多
关键词 solid-state na metal battery naK alloy Gel electrolyte electrode-electrolyte interface dendrite free anode
下载PDF
Designing ultrastable P2/O3-type layered oxides for sodium ion batteries by regulating Na distribution and oxygen redox chemistry
5
作者 Jieyou Huang Weiliang Li +3 位作者 Debin Ye Lin Xu Wenwei Wu Xuehang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期466-476,共11页
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas... P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs. 展开更多
关键词 sodium-ion batteries P2/O3-type layered oxides na distribution Oxygen redox chemistry Hydrostability
下载PDF
Dual-Functional Electrode Promoting Dendrite-Free and CO_(2) Utilization Enabled High-Reversible Symmetric Na-CO_(2) Batteries
6
作者 Changfan Xu Jiajia Qiu +6 位作者 Yulian Dong Yueliang Li Yonglong Shen Huaping Zhao Ute Kaiser Guosheng Shao Yong Lei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期123-132,共10页
Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restr... Sodium-carbon dioxide(Na-CO_(2))batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO_(2)reutilization,but their practical applications are restricted by uncontrollable sodium dendrite growth and poor electrochemical kinetics of CO_(2)cathode.Constructing suitable multifunctional electrodes for dendritefree anodes and kinetics-enhanced CO_(2)cathodes is considered one of the most important ways to advance the practical application of Na-CO_(2)batteries.Herein,RuO2 nanoparticles encapsulated in carbon paper(RuCP)are rationally designed and employed as both Na anode host and CO_(2)cathode in Na-CO_(2)batteries.The outstanding sodiophilicity and high catalytic activity of RuCP electrodes can simultaneously contribute to homogenous Na+distribution and dendrite-free sodium structure at the anode,as well as strengthen discharge and charge kinetics at the cathode.The morphological evolution confirmed the uniform deposition of Na on RuCP anode with dense and flat interfaces,delivering enhanced Coulombic efficiency of 99.5%and cycling stability near 1500 cycles.Meanwhile,Na-CO_(2)batteries with RuCP cathode demonstrated excellent cycling stability(>350 cycles).Significantly,implementation of a dendrite-free RuCP@Na anode and catalytic-site-rich RuCP cathode allowed for the construction of a symmetric Na-CO_(2)battery with long-duration cyclability,offering inspiration for extensive practical uses of Na-CO_(2)batteries. 展开更多
关键词 CO_(2)cathode dendrite free ELECTROCATALYsIs na metal anode symmetric CO_(2)batteries
下载PDF
Mechanochemical strategy assisted morphology recombination of COFs for promoted kinetics and LiPS transformation in Li-S batteries
7
作者 Yunchen Ge Yan Meng +3 位作者 Lin Liu Jianming Li Xuechun Huang Dan Xiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第12期1822-1834,共13页
A covalent organic frameworks(COFs)material with regular pores and stable structure can be used as the host of lithium-sulfur batteries to improve battery kinetics and polysulfides conversion.Herein,we designed and sy... A covalent organic frameworks(COFs)material with regular pores and stable structure can be used as the host of lithium-sulfur batteries to improve battery kinetics and polysulfides conversion.Herein,we designed and synthesized two kinds of rod-liked bulk COFs by adjusting different pore sizes(COF-BTD and COF-TFB),unfortunately,the active sites masking and sluggish kinetics have not met our expectations.Generally,the available layered COFs prepared from mechanochemical can expose abundant active sites and favorable kinetics than bulk COFs.Thus,simple mechanical ball milling is applied to activate the above COFs(M-COFs group).It is worth noting that layered R-COF-BTD is directly synthesized from rod-liked precursors by simple morphological reconstruction.A series of characterization methods are used to systematically explore the advantages of the group of M-COFs@S electrodes in the cycling process,including the effects of specific morphology on the kinetics and transformation of polysulfides.Our research provides a feasible plan for the development and selection of the host material of lithium-sulfur batteries. 展开更多
关键词 Covalent organic frameworks Ball milling Recombination of morphology Li–s batteries
下载PDF
Conversion of LiPSs Accelerated by Pt-Doped Biomass-Derived Hyphae Carbon Nanobelts as Self-Supporting Hosts for Long-Lifespan Li-S Batteries
8
作者 Fengfeng Han Liwen Fan +4 位作者 Xinzhi Ma Huiqing Lu Lu Li Xitian Zhang Lili Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期49-58,共10页
Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle... Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle life.Herein,we prepared multifunctional self-supporting hyphae carbon nanobelt(HCNB)as hosts by carbonization of hyphae balls of Rhizopus,which could increase the S loading of the cathode without sacrificing reaction kinetics.Trace platinum(Pt)nanoparticles were introduced into HCNBs(PtHCNBs)by ion-beam sputtering deposition.Based on the X-ray photoelectron spectroscopy analyses,the introduced trace Pt regulated the local electronic states of heteroatoms in HCNBs.Electrochemical kinetics investigation combined with operando Raman measurements revealed the accelerated reaction mechanics of sulfur species.Benefiting from the synergistic catalytic effect and the unique structures,the as-prepared PtHCNB/MWNCT/S cathodes delivered a stable capacity retention of 77%for 400 cycles at 0.5 C with a sulfur loading of 4.6 mg cm^(-2).More importantly,remarkable cycling performance was achieved with an high areal S loading of 7.6 mg cm^(-2).This finding offers a new strategy to prolong the cycle life of LSBs. 展开更多
关键词 high areal capacity high s loading hyphae carbon nanobelt lithium-sulfur battery operando Raman
下载PDF
Battery Separators Functionalized with Edge-Rich MoS2/C Hollow Microspheres for the Uniform Deposition of Li2S in High-Performance Lithium-Sulfur Batteries 被引量:11
9
作者 Nan Zheng Guangyu Jiang +3 位作者 Xiao Chen Jiayi Mao Nan Jiang Yongsheng Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期104-118,共15页
As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase co... As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions. 展开更多
关键词 Edge-rich Mos2/C Hollow microspheres Li2s Lithium-sulfur BATTERIEs
下载PDF
Cl/S与Na相互作用对Shell气化炉合成气冷却器入口积灰机制的影响 被引量:1
10
作者 蔡兴瑞 王跃凤 +6 位作者 杜雨佳 薛皓天 贺冲 卫月星 李晓姣 秦育红 赵保明 《煤炭学报》 EI CAS CSCD 北大核心 2024年第5期2498-2506,共9页
Shell干粉煤加压气化是煤炭洁净高效利用的重要技术之一,由碱金属化合物引起的合成气冷却器入口积灰结垢是导致气化炉非正常停工检修的主要原因。以添加不同含量的Na、Cl和S的Shell气化炉飞灰为原料,利用自主设计的高温竖直炉中沉积探... Shell干粉煤加压气化是煤炭洁净高效利用的重要技术之一,由碱金属化合物引起的合成气冷却器入口积灰结垢是导致气化炉非正常停工检修的主要原因。以添加不同含量的Na、Cl和S的Shell气化炉飞灰为原料,利用自主设计的高温竖直炉中沉积探针模拟Shell气化炉合成气冷却器入口管路,通过对积灰进行内、外分层研究,探讨内外层积灰质量的变化,并结合ICP-MS、IC、SEM-EDS和XRD等表征手段对内外层积灰的理化性质进行比较分析,获得Na、Cl、S和Fe等不同元素之间的相互作用对积灰行为的影响。结果表明,内层积灰质量随时间延长而增大,含S化合物的添加会降低内外层积灰质量,且外层积灰质量会随着时间延长而减小。Na更多以铝硅酸盐形式在外层积灰中存在,促进积灰增长;Cl通常以碱金属氯化物的形式集中在初始黏性层;S的存在会减缓管路积灰;当Cl和S共同存在时,Fe易与灰中的Si、Al和Na形成多种低温共熔物促进内、外层积灰熔融。Shell气化炉合成气冷却器入口积灰形成机制为:飞灰颗粒组分在Na、Cl、Si和Al的共同作用下,于内层形成碱金属氯化物和铝硅酸盐共晶;同时Cl、S的存在促使Fe和Na迁移到这些共晶中,形成Fe-O-Si、Fe-O-S和Fe-Na-O-Al-S共熔体。进而,铝硅酸盐与多种低温共熔体相互熔融使灰颗粒尺寸增加,促进积灰的进一步生长。 展开更多
关键词 积灰 合成气冷却器 sHELL气化炉 s CL na
下载PDF
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery 被引量:1
11
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy N s co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
Pressureless all-solid-state Na/S batteries with self-supporting Na_(5)YSi_(4)O_(12) scaffolds 被引量:2
12
作者 Aikai Yang Ruijie Ye +8 位作者 Huimin Song Qiongqiong Lu Xingchao Wang Enkhtsetseg Dashjav Kai Yao Daniel Grüner Qianli Ma Frank Tietz Olivier Guillon 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期97-110,共14页
The development of reliable and affordable all-solid-state sodium metal batteries(ASS-SMBs)requires suitable solid-state electrolytes with cost-efficient processing and stabilized electrode/electrolyte interfaces.Here... The development of reliable and affordable all-solid-state sodium metal batteries(ASS-SMBs)requires suitable solid-state electrolytes with cost-efficient processing and stabilized electrode/electrolyte interfaces.Here,an integrated porous/dense/porous Na_(5)YSi_(4)O_(12)(NYS)trilayered scaffold is designed and fabricated by tape casting using aqueous slurries.In this template-based NYS scaffold,the dense layer in the middle serves as a separator and the porous layers on both sides accommodate the active materials with their volume changes during the charge/discharge processes,increasing the contact area and thus enhancing the utilization rate and homogenizing the current distribution.The Na/NYS/Na symmetric cells with the Pb-coated NYS scaffold exhibit significantly reduced interfacial impedance and superior critical current density of up to 3.0 mA cm^(-2)against Na metal owing to enhanced wettability.Furthermore,the assembled Na/NYS/S full cells operated without external pressure at room temperature showed a high initial discharge capacity of 970 mAh g^(-1)and good cycling stability with a capacity of 600 mAh g^(-1)after 150 cycles(based on the mass of sulfur).This approach paves the way for the realization of economical and practical ASS-SMBs from the perspective of ceramic manufacturing. 展开更多
关键词 na/s batteries na_(5)Ysi_(4)O_(12) scaffold solid-state electrolytes tape casting
下载PDF
Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery 被引量:5
13
作者 Hao Fan Yu Wang +8 位作者 Fujie Gao Longqi Yang Meng Liu Xiao Du Peng Wang Lijun Yang Qiang Wu Xizhang Wang Zheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期64-71,共8页
Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hier... Exploring inexpensive and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) is critical for rechargeable metal-air batteries. Herein, we report a new 3D hierarchical sulfur and nitrogen co-doped carbon nanocages(hSNCNC) as a promising bifunctional oxygen electrocatalyst by an in-situ MgO template method with pyridine and thiophene as the mixed precursor. The as-prepared h SNCNC exhibits a positive half-wave potential of 0.792 V(vs. reversible hydrogen electrode, RHE) for ORR, and a low operating potential of 1.640 V at a 10 mA cm-2 current density for OER. The reversible oxygen electrode index is 0.847 V, far superior to commercial Pt/C and IrO2,which reaches the top level of the reported bifunctional catalysts. Consequently, the hSNCNC as air cathodes in an assembled Zn-air battery features low charge/discharge overpotential and long lifetime. The remarkable properties arises from the introduced multiple heteroatom dopants and stable 3D hierarchical structure with multi-scale pores, which provides the abundant uniform high-active S and N species and efficient charge transfer as well as mass transportation. These results demonstrate the potential strategy in developing suitable carbon-based bi-/multi-functional catalysts to enable the next generation of the rechargeable metal-air batteries. 展开更多
关键词 3D HIERARCHICAL CARBON naNOCAGEs s N CO-DOPING BIFUNCTIOnaL electrocatalysis Zn-air battery
下载PDF
Three-Dimensional Self-assembled Hairball-Like VS4 as High-Capacity Anodes for Sodium-Ion Batteries 被引量:3
14
作者 Shuangshuang Ding Bingxin Zhou +5 位作者 Changmiao Chen Zhao Huang Pengchao Li Shuangyin Wang Guozhong Cao Ming Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期142-154,共13页
Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in develo... Sodium-ion batteries(SIBs)are considered to be attractive candidates for large-scale energy storage systems because of their rich earth abundance and consistent performance.However,there are still challenges in developing desirable anode materials that can accommodate rapid and stable insertion/extraction of Na+and can exhibit excellent electrochemical performance.Herein,the self-assembled hairball-like VS4 as anodes of SIBs exhibits high discharge capacity(660 and 589 mAh g−1 at 1 and 3 A g−1,respectively)and excellent rate property(about 100%retention at 10 and 20 A g−1 after 1000 cycles)at room temperature.Moreover,the VS4 can also exhibit 591 mAh g−1 at 1 A g−1 after 600 cycles at 0°C.An unlike traditional mechanism of VS4 for Na+storage was proposed according to the dates of ex situ characterization,cyclic voltammetry,and electrochemical kinetic analysis.The capacities of the final stabilization stage are provided by the reactions of reversible transformation between Na2S and S,which were considered the reaction mechanisms of Na–S batteries.This work can provide a basis for the synthesis and application of sulfur-rich compounds in fields of batteries,semiconductor devices,and catalysts. 展开更多
关键词 Vs4 sodium-ion batteries Low-temperature batteries Reaction kinetics na%PLUs%storage mechanism
下载PDF
Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal 被引量:7
15
作者 Xiaoyan Xu Yuanyuan Li +6 位作者 Jun Cheng Guangmei Hou Xiangkun Nie Qing Ai Linna Dai Jinkui Feng Lijie Ci 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期73-78,共6页
High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS... High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS4-polyethylene oxide is synthesized by the solution-phase reaction method with an improved ionic conductivity up to 9.4 × 10-5 S/cm at room temperature. Moreover, polyethylene oxide polymer layer is wrapped homogeneously on the surface of Na3PS4 particles, which could effectively avoid the direct contact between Na3PS4 electrolyte and sodium metal, thus alleviate their side reactions. We demonstrate that all-solid-state battery SnS2/Na with the composite solid electrolyte Na3PS4-polyethylene oxide delivers an enhanced electrochemical performance with 230 m Ah/g after 40 cycles. 展开更多
关键词 COMPOsITE solid ELECTROLYTE na 3Ps4 ALL-sOLID-sTATE sodium battery sns2
下载PDF
Growth of SnO_2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li-and Na-ion Batteries 被引量:11
16
作者 Jiaojiao Liang Chaochun Yuan +4 位作者 Huanhuan Li Kai Fan Zengxi Wei Hanqi Sun Jianmin Ma 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期21-29,共9页
It is urgent to solve the problems of the dramatic volume expansion and pulverization of SnO_2 anodes during cycling process in battery systems. To address this issue, we design a hybrid structure of N-doped carbon fi... It is urgent to solve the problems of the dramatic volume expansion and pulverization of SnO_2 anodes during cycling process in battery systems. To address this issue, we design a hybrid structure of N-doped carbon fibers@SnO_2 nanoflowers(NC@SnO_2) to overcome it in this work. The hybrid NC@SnO_2 is synthesized through the hydrothermal growth of SnO_2 nanoflowers on the surface of N-doped carbon fibers obtained by electrospinning. The NC is introduced not only to provide a support framework in guiding the growth of the SnO_2 nanoflowers and prevent the flower-like structures from agglomeration, but also serve as a conductive network to accelerate electronic transmission along one-dimensional structure effectively. When the hybrid NC@SnO_2 was served as anode, it exhibits a high discharge capacity of 750 Ah g^(-1) at 1 A g^(-1) after 100 cycles in Li-ion battery and 270 mAh g^(-1) at 100 mA g^(-1) for 100 cycles in Na-ion battery, respectively. 展开更多
关键词 sNO2 nanostructures ANODE Li-ion battery na-ion battery
下载PDF
Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries 被引量:6
17
作者 Yu Han Shuang-yu Liu +7 位作者 Lei Cui Li Xu Jian Xie Xue-Ke Xia Wen-Kui Hao Bo Wang Hui Li Jie Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期88-93,共6页
A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-li... A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and -50 nm, re- spectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during re- peated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh·g^-1 after 100 cycles at 50 mA·g^-1, demon- strating the good cycling stability as a result of the unique microstructure of this electrode material. 展开更多
关键词 GRAPHENE Ni3s2 nanoflakes sodium-ion battery electrochemical performance
下载PDF
Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode 被引量:6
18
作者 Honghui Bi Xiaojun He +3 位作者 Lei Yang Hongqiang Li Biyu Jin Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期195-204,I0007,共11页
Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hi... Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering. 展开更多
关键词 3D Carbon nanocapsules N/s co-doping Carbon anode Potassium-ion battery
下载PDF
Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries 被引量:9
19
作者 Maria K.Rybarczyk Yunming Li +3 位作者 Mo Qiao Yong-Sheng Hu Maria-Magdalena Titirici Marek Lieder 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期17-22,共6页
Here,we report the synthesis of hard carbon materials(RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries.The studies show that the electrochemi... Here,we report the synthesis of hard carbon materials(RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries.The studies show that the electrochemical properties of RHs are affected by the treatment temperatures,which determine the materials morphology,in particular,their degree of graphitization and extent of continuous channels(nanovoids).The latter are accessible to sodium ions and significantly contribute to charge storage capacity of the produced anodes.The RHs obtained at 1600 °C deliver the highest reversible capacity of276 mAh g^(-1) mainly due to insertion of sodium ions into the nanovoids.This work deepens the basic understanding of the influence of the carbonization temperature on the sodium storage mechanism. 展开更多
关键词 nanovoids in RICE husk sUsTAInaBLE energy storage na-ion BATTERIEs
下载PDF
Microstructural analyses of all-solid-state Li–S batteries using LiBH4-based solid electrolyte for prolonged cycle performance 被引量:3
20
作者 Kazuaki Kisu Sangryun Kim +3 位作者 Ryuga Yoshida Hiroyuki Oguchi Naoki Toyama Shin-ichi Orimo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期424-429,共6页
Complex hydride materials have been widely investigated as potential solid electrolytes because they have good compatibility with the lithium metal anodes used in all-solid-state batteries. However, the development of... Complex hydride materials have been widely investigated as potential solid electrolytes because they have good compatibility with the lithium metal anodes used in all-solid-state batteries. However, the development of all-solid-state batteries utilizing complex hydrides has been difficult as these cells tend to have short cycle lives. This study investigated the capacity fading mechanism of all-solid-state lithium–sulfur(Li–S) batteries using Li4(BH4)3I solid electrolytes by analyzing the cathode microstructure. Crosssectional scanning electron microscopy observations after 100 discharge–charge cycles revealed crack formation in the Li4(BH4)3I electrolyte and an increased cathode thickness. Raman spectroscopy indicated that decomposition of the Li4(BH4)3I solid electrolyte occurred at a constant rate during the cycling tests.To combat these effects, the cycle life of Li–S batteries was improved by increasing the amount of solid electrolyte in the cathode. 展开更多
关键词 All-solid-state battery Complex hydride solid electrolyte Li metal anode Li–s battery MICROsTRUCTURE
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部