Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides c...Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na^+/K^+-ATPase α-subunit eDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of eDNA end methods. Analysis of the nucleotide sequence revealed that the eDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na^+/K^+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of arnino acid sequences showed that the P. tritubereulatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na^+/K^+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.展开更多
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA10A409)the National Natural Science Foundation of China(No.41306177)the Special Scientific Research Funds for Central Non-Profit Institutes,Yellow Sea Fisheries Research Institutes(No.20603022013027)
文摘Na^+/K^+-ATPases are membrane-associated enzymes responsible for the active transport of Na^+ and K^+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na^+/K^+-ATPase α-subunit eDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of eDNA end methods. Analysis of the nucleotide sequence revealed that the eDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na^+/K^+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of arnino acid sequences showed that the P. tritubereulatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na^+/K^+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.