Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcell...Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcellulose (EC) by the emulsion solvent diffusion technique. The release rate of mefformin from the microcapsules was highly dependent on the encapsulating formulation, thus being used as an index for formulation screening. Orthogonal experiments were performed to optimize the coating formulation. Results The final chosen formulation for coating of mefformin microcapsules were as follows: ( 1 ) the ratio of EC (20cps) to EC (45cps) was 50:50; (2) the ratio of plasticizer to coating materials was 20% ;and (3) the ratio of resin-mefformin complexes to coating materials was 5 : 1. Conclusion The prolonged release microspheres of mefformin hydrochloride were successfully prepared.展开更多
Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the stron...Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the strong anion exchange resin (201 × 7) as the carrier. The effects of different forms (OH~ - and Cl~ - ) of the strong anion exchange resin, the particle size of the resin, and the reaction temperature on the exchange behavior were described. The exchange kinetic profiles were fitted. The related exc...展开更多
Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation ex...Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.展开更多
In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since hum...In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.展开更多
The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorpti...The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.展开更多
Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC\|50H an...Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC\|50H and amberlite IR\|120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments, such as Ca and Mg from dolomite; Ca from calcite, gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum, calcite, dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments. The efficiency of amberlite IRC\|50H in the removal of associated minerals is greater than that of amberlite IR\|120.展开更多
The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle...The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.展开更多
This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified ...This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified oil,reaction temperature,and catalyst loading were studied to optimize the conditions for maximum conversion of free fatty acids(FFAs). The results showed that the optimal conversion rate of FFAs was 91.87% at the mass ratio of methanol to acidified oil of 2.5:1.0,reaction temperature of 65.0 °C,catalyst loading of 5.0 g and reaction time of 8.0 h. The external and internal mass transfer resistances were negligible based on the experimental results and a pseudo-homogeneous kinetic model was proposed for the esterification. The activation energy and thermodynamic parameters including G,S and H were determined. The conversion rates of FFAs obtained from the established model were in good agreement with the experimental data.展开更多
This study assessed the adsorption process and the reaction kinetics involved in the selective recovery of vanadium from an acid solution containing iron as an impurity.Four commercial resins were studied:Lewatit^(...This study assessed the adsorption process and the reaction kinetics involved in the selective recovery of vanadium from an acid solution containing iron as an impurity.Four commercial resins were studied:Lewatit^(®)MonoPlus TP 209 XL,Lewatit^(®) TP 207,Dowex^(TM)M4195(chelating resin)and Lewatit^(®) MonoPlus S 200 H(strong cationic exchange resin).To investigate the effect of time on the adsorption process,batch experiments were carried out using the following initial conditions:pH 2.0,298 K,and a proportion of 1 g of resin to 50 mL of solution.The variation of pH over time was analyzed.Chelating resin released less H+ions as the adsorption occurred,resulting in a lower drop of pH when compared to S 200 H resin.Ion adsorption by the resins was also evaluated through FT-IR and SEM−EDS before and after the experiments.Among the evaluated kinetic models(pseudo-first order,pseudo-second order,Elovich and intraparticle diffusion models),the pseudo-second order model best fits the experimental data of the adsorption of vanadium and iron by all of the four resins.M4195 resin showed the highest recovery of vanadium and the lowest adsorption of iron.Kinetic data,which are fundamental to industrial processes applications,are provided.展开更多
The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time,...The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.展开更多
In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxide...In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxides/hydroxides composite(FeMg/CER)was synthesized and introduced as a new and potential adsorbent for selective removal of nitrate ion in the water environment.Characteristics of FeMg/CER were determined by techniques such as Fouriertransform infrared spectroscopy,scanning electron microscopy,and Xray diffraction.The results showed that FeMg/CER material had a high nitrate adsorption capacity of 200 mg NO_(3)^()·g^(1)with a fast equilibrium adsorption time of 30 min at pH 5.In addition,it had good durability of at least 10 times of regeneration,which could be applied to practical water and wastewater treatment.展开更多
The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromisin...The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromising the safety of any leakage from the radioactive waste form. The immobilization of the spent resin (NRW-40) in borosilicate glass was investigated to meet the acceptance criteria for disposal of nuclear waste. The organic mixed bed resin in granular form was used as a waste target. The analysis of surrogate resin doped with radioactive and non-radioactive cesium (Cs) and cobalt (Co) was carried out to investigate their thermal and chemical properties and their compatibility with an alkaline borosilicate glass. The thermal analysis indicates that the structural damage caused by 1 mSv gamma radiation to the radioactive resin has altered its properties in comparison with the non-radioactive resin, same amount of cesium (8.88 wt%) and cobalt (1.88 wt%) were used in both resins. The immobilization of residue shows that the excess sulfur in the residue caused phase crystallization in the final glass matrix. It was found that the volatilization of Cs-137 and Co-60 from the successful radioactive resin-glass matrix (HG-3-IER-500) were more than that in the non-radioactive resin-glass matrix (HG-3-IEX-500). The study demonstrates comprehensive experimental and analytical works and shows that it is possible to minimise the volume of the waste while keeping the required safety levels, however further research needs to be carried out in this area.展开更多
The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acryli...The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised.Drug-resin complexes(DRCs)with three different ratios of drug to IERs(1:1,1:2,1:4)were prepared&evaluated for taste masking by following in vivo and in vitro methods.Human volunteers graded ADC 1:4,acrylic acid-divinyl benzene(ADC-3)resin as tasteless.Characterization studies such as FTIR,SEM,DSC,P-XRD differentiated ADC 1:4,from physical mixture(PM 1:4)and confirmed the formation of complex.In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid(SGF)i.e.pH 1.2.IPN beads were prepared with ADC 1:4 by using sodium alginate(AL)and sodium alginate-chitosan(AL-CS)for sustain release of CP at SGF pH and followed by simulated intestinal fluid(SIF i.e.pH 7.4).FTIR spectra confirmed the formation of IPN beads.The release of CP was sustain at SGF pH(<20%)whereas in SIF media it was more(>75%).The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.展开更多
The ion exchange resin Amberlite IRA-400 in iodide and bromide form where equilibrated separately with the respective labeled iodide and bromide ion solution of different concen-trations varying from 0.005M to 0.100M ...The ion exchange resin Amberlite IRA-400 in iodide and bromide form where equilibrated separately with the respective labeled iodide and bromide ion solution of different concen-trations varying from 0.005M to 0.100M in the temperature range of 32.0 oC to 48.0 oC. The dis-tribution coefficient Kd values calculated for iodide and bromide ion exchange increases with rise in ionic concentration of the external solution, however with rise in temperature the Kd values calculated where found to decrease. Also the Kd values calculated where higher for iodide exchange than bromide exchange. Among the different alternative techniques available for obtaining the Kd values, the radio-active tracer technique used in the present ex-perimental work offers high detection sensitivity. It is expected that the distribution coefficient data obtained from such experimental work will significant in environmental impact assessment on the disposal of radioactive waste.展开更多
Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange...Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange resin catalyst CT-145H. A packed CDC of 1.2 m height and 50 mm diameter with indigenously developed reactive sec-tion packing was used to generate experimental data. Effect of different key variables on product purity in distillate, was investigated to find the optimum operating conditions for ETBE synthesis. The optimum conditions for 0.2 kg·s-1 of ethanol feed were found:reboiler duty of 375 W, molar feed ratio of 1︰1.3 of reactants, and reflux ratio of 7. Concentration profiles for each component along each column section at optimum conditions were also drawn. Neither output nor input multiplicity was observed at experimental conditions.展开更多
Ca(OH)2 nanoparticles in hydro-alcoholic dispersion (nanolime) were successfully employed in Cultural Heritage conservation, thanks to the ability to overcome the limiting aspects of traditional lime treatments. Nanol...Ca(OH)2 nanoparticles in hydro-alcoholic dispersion (nanolime) were successfully employed in Cultural Heritage conservation, thanks to the ability to overcome the limiting aspects of traditional lime treatments. Nanolime were currently produced by chemical precipitation process, at high temperature, with long times of synthesis, and after several purification steps to remove undesired secondary phases. In this paper, an innovative, simple and original method for nanolime production was described. The method was based on an ion exchange process between an anionic resin and a calcium chloride aqueous solution, operating at room temperature. A pure Ca(OH)2 nanoparticles suspension can be rapidly obtained after separating the resin from suspension, and any purification step was necessary. The exhausted resins can be regenerated and reused for a cyclic nanolime production. Structural and morphological features of the produced nanolime were preliminarily characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, XRD measurements allowed estimating nanoparticles reactivity by following their carbonatation process in air, in relation to different water/alcohol ratios and medium or high relative humidity conditions. The produced Ca(OH)2 nanoparticles appeared hexagonally plated, with dimension less than 100 nm and, compared with those obtained by typical wet precipitation method, they proved to be more reactive.展开更多
The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influenc...The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.展开更多
In order to explore internal factors for adsorption kinetic effect of miglitol by D001 resin, a batch adsorption operation for miglitol kinetic adsorption at different concentrations, temperatures and vibrating rates ...In order to explore internal factors for adsorption kinetic effect of miglitol by D001 resin, a batch adsorption operation for miglitol kinetic adsorption at different concentrations, temperatures and vibrating rates was investigated in oscillator (SHZ-A), respectively. The different kinetic mathematical model, Webber-Morris kinetic equation, film diffusion coefficient equation and kinetic boundary model were all applied to discuss the adsorption process. The results showed that Type 1 pseudo-second order kinetic equation can be all used to describe miglitol adsorbed by D001 resin at different concentrations, temperatures and vibrating rates. Moreover, the total activation energy (Ea) can be calculated and its value is 9.7 kJ/mol, and then calculated values of the process film diffusion coefficient and pore diffusion coefficient, it may be inferred from these gotten values that the ion exchange process is all mainly controlled by film diffusion. Therefore, the results also suggest that the external adsorption factors such as solute concentration, temperature and vibrating rate for effect of mass transfer diffusion process control of miglitol onto D001 resin are relatively weak.展开更多
Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange...Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.展开更多
In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to su...In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to supply the desalinated water by mixedbed The electric regeneration technology is a new one used for regeneration of theexhausted ion exchangers in the mixed bed instead of the traditional regeneratingprocess by using acid and abc liquor Electric energy is consumed to regenerat theion exchangers loaded by salts from water treatment without any chemicals- acid alkali. The advantage of the electric regeneration process edibited convenientoperation, no discharge any waste, and therefore no Polluted to the recehang waterbode and the environmental ground展开更多
文摘Aim To prepare the prolonged-released microspheres of mefformin hydrochloride. Methods Ion-exchange resin-drug mefformin hydrochloride complexes were prepared as core materials, and followed by coating using ethylcellulose (EC) by the emulsion solvent diffusion technique. The release rate of mefformin from the microcapsules was highly dependent on the encapsulating formulation, thus being used as an index for formulation screening. Orthogonal experiments were performed to optimize the coating formulation. Results The final chosen formulation for coating of mefformin microcapsules were as follows: ( 1 ) the ratio of EC (20cps) to EC (45cps) was 50:50; (2) the ratio of plasticizer to coating materials was 20% ;and (3) the ratio of resin-mefformin complexes to coating materials was 5 : 1. Conclusion The prolonged release microspheres of mefformin hydrochloride were successfully prepared.
文摘Aim To study the exchange reaction characteristics of anion exchange resin for diclofenac sodium. Methods The drug-resin complexes were prepared by a batch method with diclofenac sodium as the model drug and the strong anion exchange resin (201 × 7) as the carrier. The effects of different forms (OH~ - and Cl~ - ) of the strong anion exchange resin, the particle size of the resin, and the reaction temperature on the exchange behavior were described. The exchange kinetic profiles were fitted. The related exc...
基金Supported by the National Basic Research Program of China(2016YFD0200404)
文摘Iron element is one of the main impurities in wet-process phosphoric acid and it has a significant impact on the subsequent phosphorus chemical products. This paper studied the feasibility of using Sinco-430 cation exchange resin for iron removal from phosphoric acid. The specific surface area and the total exchange capacity of resin were 8.91 m2·g-1 and 5.18 mmol·g-1, respectively. The sorption mechanism was determined by FTIR and XPS and the results indicated that iron was combined with-SO3 H in resin. The removal process was studied as a function of temperature, H3 PO4 content and mass ratio between resin and solution. The unit mass of resin to remove iron was 0.058 g·g-1 resin when the operating parameters were T = 50 ℃, H3 PO4 content = 27.61 wt%and S/L = 0.1, respectively. Kinetics study demonstrated that pseudo-second-order reaction model fits this study best and the calculated activation energy of overall reaction is 29.10 kJ·mol-1. The overall reaction process was mainly controlled by pore diffusion.
基金support provided by the National Nature Science Fund(No.50778088)China National Funds for Distinguished Young Scientists(No.50825802)Resources Special Subject of National High Technology Research & Development Project(863 project,No.2006AA06Z383),China.
文摘In this paper, humic acid (HA) was ultra-filtered into different molecular weight sections and was characterized by multielement analysis, UV254/TOC, FT-IR and three-dimensional fluorescence spectrometric. Since humic acids of different molecular weights have different hydrophilic and molecular size, the maximum adsorption capacity of basic ion exchange resins appears on the humic acid whose molecular weight ranges from 6000 to 10,000 Da.
基金Projects(21376251,21406233) supported by the National Natural Science Foundation of China
文摘The adsorption behavior of ion exchange resin D301 in the extraction of hexavalent molybdenum from high acidic leach solution was investigated. SEM, EDS and Raman spectra analyses were applied to studying the adsorption capacity, reaction kinetics and possible adsorption mechanism in detail. Results showed that the adsorption capacity of D301 resin for molybdenum from high acidic leach solution was up to 463.63 mg/g. Results of the kinetic analysis indicated that the adsorption process was controlled by the particle diffusion with the activation energy 25.47 k J/mol(0.9-1.2 mm) and 20.38 k J/mol(0.6-0.9 mm). Furthermore, the molybdenum loaded on the resin could be eluted by using 2 mol/L ammonia hydroxide solution. Besides, dynamic continuous column experiments verified direct extraction of molybdenum from acidic leach solutions by ion exchange resin D301 and the upstream flow improved dynamic continuous absorption.
文摘Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC\|50H and amberlite IR\|120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments, such as Ca and Mg from dolomite; Ca from calcite, gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum, calcite, dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments. The efficiency of amberlite IRC\|50H in the removal of associated minerals is greater than that of amberlite IR\|120.
基金Supported by the National Basic Research Program of China (2007CB714300)
文摘The esterification reactions of lactic acid with isobutanol and n-butanol have been studied in the presence of acid ion-exchange resin Weblyst D009. The influences of catalyst loading, stirrer speed, catalyst particle size, initial reactant molar ratio and temperature on the reaction rate have been examined. Experimental kinetic data were correlated by using the pseudo-homogeneous, Langnluir-Hinshelwood and Eley-Rideal models. Nonideality of the liquid phase was taken into account by using activities instead of molar fractions. The activity coefficients were calculated according to the group contribution method UNIFAC. Provided that the nonideality of the liquid is taken into account, the esterification kinetics of lactic acid with isobutanol and n-butanol catalyzed by the acid ion-exchange resin can be described using all threemodels with reasonable errors.
基金support from the Natural Science Foundation of Shandong Province (Grant no.ZR2013BL010)the Research Excellence Award of Shandong University of Technology and the Zibo Technology Research and Development Program of China (Grant no.2013GG04110)
文摘This study describes the kinetics and thermodynamics of the esterification of acidified oil with methanol catalyzed by sulfonated cation exchange resins(SCER). The effects of the mass ratio of methanol to acidified oil,reaction temperature,and catalyst loading were studied to optimize the conditions for maximum conversion of free fatty acids(FFAs). The results showed that the optimal conversion rate of FFAs was 91.87% at the mass ratio of methanol to acidified oil of 2.5:1.0,reaction temperature of 65.0 °C,catalyst loading of 5.0 g and reaction time of 8.0 h. The external and internal mass transfer resistances were negligible based on the experimental results and a pseudo-homogeneous kinetic model was proposed for the esterification. The activation energy and thermodynamic parameters including G,S and H were determined. The conversion rates of FFAs obtained from the established model were in good agreement with the experimental data.
基金provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq,grant 130978/2020-5)to the Fundação de AmparoàPesquisa do Estado de São Paulo(FAPESP,grant 2019/11866-5)to CAPES for the financial support.
文摘This study assessed the adsorption process and the reaction kinetics involved in the selective recovery of vanadium from an acid solution containing iron as an impurity.Four commercial resins were studied:Lewatit^(®)MonoPlus TP 209 XL,Lewatit^(®) TP 207,Dowex^(TM)M4195(chelating resin)and Lewatit^(®) MonoPlus S 200 H(strong cationic exchange resin).To investigate the effect of time on the adsorption process,batch experiments were carried out using the following initial conditions:pH 2.0,298 K,and a proportion of 1 g of resin to 50 mL of solution.The variation of pH over time was analyzed.Chelating resin released less H+ions as the adsorption occurred,resulting in a lower drop of pH when compared to S 200 H resin.Ion adsorption by the resins was also evaluated through FT-IR and SEM−EDS before and after the experiments.Among the evaluated kinetic models(pseudo-first order,pseudo-second order,Elovich and intraparticle diffusion models),the pseudo-second order model best fits the experimental data of the adsorption of vanadium and iron by all of the four resins.M4195 resin showed the highest recovery of vanadium and the lowest adsorption of iron.Kinetic data,which are fundamental to industrial processes applications,are provided.
基金Project(2008ZX07421-002) supported by the Key National Science and Technology Project of ChinaProject(50638020) supported by the National Natural Science Foundation of China
文摘The effectiveness of a magnetic ion exchange resin (MIEX) for the treatment of Hongze Lake water in China was evaluated, The kinetics of natural organic matter (NOM) removal at various MIEX doses and contact time, multiple-loading experiments, impacts of MIEX prior to coagulation on coagulant demands and the effectiveness of combination of MIEX, pre-chlorination and coagulation were investigated. Kinetic experimental results show that more than 80% UV254 and 67% dissolved organic carbon (DOC) from raw water can be removed by the use of MIEX alone. 94% sulfate, 69% nitrate and 98% bromide removals are obtained after the first use of MIEX in multiple-loading experiments. It is suggested that MIEX can be loaded up to 1 250 bed volume (BV, volume ratio of tested water to resin) or more without saturation when regarding organics removal as a target. MIEX can remove organics to a greater extend than coagulation and lower the coagulant demand when combining with coagulation. Chlorination experimental results show that MIEX can remove 57% chlorine demand and 77% trihalomethane formation potential (THMFP) for raw water. Pre-chlorination followed by MIEX and coagulation can give additional organic and THMFP removals. The results suggest that MIEX provides a new method to solve thc problem algae reproduction.
基金Vietnam National University-Ho Chi Minh City under grant number A2020-16-01.
文摘In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxides/hydroxides composite(FeMg/CER)was synthesized and introduced as a new and potential adsorbent for selective removal of nitrate ion in the water environment.Characteristics of FeMg/CER were determined by techniques such as Fouriertransform infrared spectroscopy,scanning electron microscopy,and Xray diffraction.The results showed that FeMg/CER material had a high nitrate adsorption capacity of 200 mg NO_(3)^()·g^(1)with a fast equilibrium adsorption time of 30 min at pH 5.In addition,it had good durability of at least 10 times of regeneration,which could be applied to practical water and wastewater treatment.
文摘The underground disposal of waste arising from the nuclear industry needs constant evaluation in order to improve upon it through minimizing the volume and cost by reducing the amount of glass used without compromising the safety of any leakage from the radioactive waste form. The immobilization of the spent resin (NRW-40) in borosilicate glass was investigated to meet the acceptance criteria for disposal of nuclear waste. The organic mixed bed resin in granular form was used as a waste target. The analysis of surrogate resin doped with radioactive and non-radioactive cesium (Cs) and cobalt (Co) was carried out to investigate their thermal and chemical properties and their compatibility with an alkaline borosilicate glass. The thermal analysis indicates that the structural damage caused by 1 mSv gamma radiation to the radioactive resin has altered its properties in comparison with the non-radioactive resin, same amount of cesium (8.88 wt%) and cobalt (1.88 wt%) were used in both resins. The immobilization of residue shows that the excess sulfur in the residue caused phase crystallization in the final glass matrix. It was found that the volatilization of Cs-137 and Co-60 from the successful radioactive resin-glass matrix (HG-3-IER-500) were more than that in the non-radioactive resin-glass matrix (HG-3-IEX-500). The study demonstrates comprehensive experimental and analytical works and shows that it is possible to minimise the volume of the waste while keeping the required safety levels, however further research needs to be carried out in this area.
文摘The aim of the study was to taste mask ciprofloxacin(CP)by using ion-exchange resins(IERs)followed by sustain release of CP by forming interpenetrating polymer network(IPN).IERs based on the copolymerization of acrylic acid with different cross linking agents were synthesised.Drug-resin complexes(DRCs)with three different ratios of drug to IERs(1:1,1:2,1:4)were prepared&evaluated for taste masking by following in vivo and in vitro methods.Human volunteers graded ADC 1:4,acrylic acid-divinyl benzene(ADC-3)resin as tasteless.Characterization studies such as FTIR,SEM,DSC,P-XRD differentiated ADC 1:4,from physical mixture(PM 1:4)and confirmed the formation of complex.In vitro drug release of ADC 1:4 showed complete release of CP within 60 min at simulated gastric fluid(SGF)i.e.pH 1.2.IPN beads were prepared with ADC 1:4 by using sodium alginate(AL)and sodium alginate-chitosan(AL-CS)for sustain release of CP at SGF pH and followed by simulated intestinal fluid(SIF i.e.pH 7.4).FTIR spectra confirmed the formation of IPN beads.The release of CP was sustain at SGF pH(<20%)whereas in SIF media it was more(>75%).The kinetic model of IPN beads showed the release of CP was non-Fickian diffusion type.
文摘The ion exchange resin Amberlite IRA-400 in iodide and bromide form where equilibrated separately with the respective labeled iodide and bromide ion solution of different concen-trations varying from 0.005M to 0.100M in the temperature range of 32.0 oC to 48.0 oC. The dis-tribution coefficient Kd values calculated for iodide and bromide ion exchange increases with rise in ionic concentration of the external solution, however with rise in temperature the Kd values calculated where found to decrease. Also the Kd values calculated where higher for iodide exchange than bromide exchange. Among the different alternative techniques available for obtaining the Kd values, the radio-active tracer technique used in the present ex-perimental work offers high detection sensitivity. It is expected that the distribution coefficient data obtained from such experimental work will significant in environmental impact assessment on the disposal of radioactive waste.
基金Part of this paper was included in the proceedings of World Congress on Engineering and Computer Science,San Francisco,USA,22-24 October,2008,pp.79-84(ISBN 978-988-98671-0-2)The first author is grateful to Higher Education Commission of Pakistan for funding this research under indigenous scheme
文摘Liquid phase synthesis of one of the important fuel oxygenate, ethyl tert-butyl ether (ETBE), from etha-nol and tert-butyl alcohol (TBA) has been studied in catalytic distillation column (CDC) using ion exchange resin catalyst CT-145H. A packed CDC of 1.2 m height and 50 mm diameter with indigenously developed reactive sec-tion packing was used to generate experimental data. Effect of different key variables on product purity in distillate, was investigated to find the optimum operating conditions for ETBE synthesis. The optimum conditions for 0.2 kg·s-1 of ethanol feed were found:reboiler duty of 375 W, molar feed ratio of 1︰1.3 of reactants, and reflux ratio of 7. Concentration profiles for each component along each column section at optimum conditions were also drawn. Neither output nor input multiplicity was observed at experimental conditions.
文摘Ca(OH)2 nanoparticles in hydro-alcoholic dispersion (nanolime) were successfully employed in Cultural Heritage conservation, thanks to the ability to overcome the limiting aspects of traditional lime treatments. Nanolime were currently produced by chemical precipitation process, at high temperature, with long times of synthesis, and after several purification steps to remove undesired secondary phases. In this paper, an innovative, simple and original method for nanolime production was described. The method was based on an ion exchange process between an anionic resin and a calcium chloride aqueous solution, operating at room temperature. A pure Ca(OH)2 nanoparticles suspension can be rapidly obtained after separating the resin from suspension, and any purification step was necessary. The exhausted resins can be regenerated and reused for a cyclic nanolime production. Structural and morphological features of the produced nanolime were preliminarily characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, XRD measurements allowed estimating nanoparticles reactivity by following their carbonatation process in air, in relation to different water/alcohol ratios and medium or high relative humidity conditions. The produced Ca(OH)2 nanoparticles appeared hexagonally plated, with dimension less than 100 nm and, compared with those obtained by typical wet precipitation method, they proved to be more reactive.
基金Project(2005) supported by the Basic Technology Research Item of Explosive Industry, China
文摘The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.
文摘In order to explore internal factors for adsorption kinetic effect of miglitol by D001 resin, a batch adsorption operation for miglitol kinetic adsorption at different concentrations, temperatures and vibrating rates was investigated in oscillator (SHZ-A), respectively. The different kinetic mathematical model, Webber-Morris kinetic equation, film diffusion coefficient equation and kinetic boundary model were all applied to discuss the adsorption process. The results showed that Type 1 pseudo-second order kinetic equation can be all used to describe miglitol adsorbed by D001 resin at different concentrations, temperatures and vibrating rates. Moreover, the total activation energy (Ea) can be calculated and its value is 9.7 kJ/mol, and then calculated values of the process film diffusion coefficient and pore diffusion coefficient, it may be inferred from these gotten values that the ion exchange process is all mainly controlled by film diffusion. Therefore, the results also suggest that the external adsorption factors such as solute concentration, temperature and vibrating rate for effect of mass transfer diffusion process control of miglitol onto D001 resin are relatively weak.
基金Supported by the National Natural Science Foundation of China(51678408,51478314,51638011)the National Key Research and Development Program of China(2016YFC0400506)+1 种基金the Natural Science Foundation of Tianjin(14JCQNJC09000)the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology(TJKLASTZD-2016-06)
文摘Magnetic ion exchange(MIEX) resins have received considerable attention in drinking water treatment due to their fast and efficient removal of dissolved organic carbon(DOC). Two types of mechanisms, i.e., ion exchange,reversible and irreversible adsorption, may occur during pollutants removal by MIEX. This work examined the removal mechanism of 17α-Ethinylestradiol(EE2) by MIEX. As one of typical estrogen micro-pollutants,EE2 existed as neutral molecule in natural water, and its charge density was close to zero [(0.00000219 ±0.00000015) meq·(μg EE2)^(-1)] based on the potentiometric titration method. However, the removal of EE2 by MIEX was much higher than that of other micro-pollutants previously reported. Multi-cycle adsorptionregeneration experiments and ion exchange stoichiometry analysis were conducted to elucidate the removal mechanism of EE2 by MIEX resin. The results suggested that the main removal mechanism of EE2 by MIEX was ion exchange instead of reversible micro-pore adsorption. The experimental analysis based on Donnan theory indicated that the internal micro-environment of resin beads was alkaline, in the alkaline environment EE2 would be ionized into negatively charged groups. As a result, ion exchange reaction occurred inside the pore of MIEX resin, and the removal process of EE2 by MIEX was dominated by the ion exchange reaction.
文摘In this paper the self-regeneration process of the mixed resins consisting of cationand anion ion exchangers in the electrolialyser of the packed bed is analyzed and anelectric regeneration method is put forward to supply the desalinated water by mixedbed The electric regeneration technology is a new one used for regeneration of theexhausted ion exchangers in the mixed bed instead of the traditional regeneratingprocess by using acid and abc liquor Electric energy is consumed to regenerat theion exchangers loaded by salts from water treatment without any chemicals- acid alkali. The advantage of the electric regeneration process edibited convenientoperation, no discharge any waste, and therefore no Polluted to the recehang waterbode and the environmental ground