The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 =...The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 = 7.31×10^-20 and Ω6 = 6.91×10^-20 cm^2. The radiative lifetime is 100 μs, and the quantum efficiency is 93.9%. The fluorescence branch ratios were calculated to be β1 = 0.441, β2 = 0.469,β3 = 0.086 and β4=0.004.展开更多
Single crystal of Li2Zn2(MoO4)3 has been grown from a flux of Li2MoO4 by the top-seeded solution-growth method, and its stnicture was refined by the Rietveld method. It belongs to the orthorhombic system, space grou...Single crystal of Li2Zn2(MoO4)3 has been grown from a flux of Li2MoO4 by the top-seeded solution-growth method, and its stnicture was refined by the Rietveld method. It belongs to the orthorhombic system, space group Pnma with a = 5.1114, b = 10.4906 and c = 17.6172A. Good agreement between the experimental and calculated profile (Rp = 6.69%, Rwp = 9.73% and Rexp = 6.58%) was reached.展开更多
The title compound belongs to monoclinic, space group C2/c with a = 5.2694(1), b = 12.6659(4), c = 19.4108(2) A,β= 91.504(2)°, V = 1295.06(5) A^3, Z = 4 and Dc= 5.599 g/cm^3. The structure of BaGd2(M...The title compound belongs to monoclinic, space group C2/c with a = 5.2694(1), b = 12.6659(4), c = 19.4108(2) A,β= 91.504(2)°, V = 1295.06(5) A^3, Z = 4 and Dc= 5.599 g/cm^3. The structure of BaGd2(MoO4)4 contains a MoO4 tetrahedron, a distorted GdO8 polyhedron, and Ba^2+ ions in a tenfold coordination. The GdO8 polyhedra are linked together through edge-sharing to give a two-dimensional Gd layer. The MoO4 tetrahedra connected to the Gd atoms are capped up and down the Gd layer through common oxygen apices, thus-forming a new Gd-Mo layer. Finally, the Gd-Mo layers are held together through bridging BaO10 polyhedra to form a three-dimensional framework. Since the Ba-μ3-O bond has a large average distance of 2.888 A, this structural characteristic will result in a cleavage along the (001) plane.展开更多
By using Tb407 and MoO3 as starting materials, ferroelectric Tb2(MoO4)3 crystal was grown by the Czochralski method. The as-grown crystal was pale green color, transparent and crack-free. X-ray powder diffraction (...By using Tb407 and MoO3 as starting materials, ferroelectric Tb2(MoO4)3 crystal was grown by the Czochralski method. The as-grown crystal was pale green color, transparent and crack-free. X-ray powder diffraction (XRPD), transmission spectrum, dielectric constant and polarization-electric field (P-E) hysteresis loop measurements were performed to characterize the crystal. The XRPD confirmed the as-grown crystal to be Tb2(MoO4)3. The transmission spectrum of the crystal showed that its transmittance in the entire visible and most near-infrared region was more than 70% except for an absorption peak around 486 nm. Obvious dielectric anomaly could be observed at low frequencies with increasing temperature through the dielectric constant measurement and the Curie temperature of Tb2(MoO4)3 crystal was determined to be 162.3℃ The unsaturated P-E hysteresis loops indicated that it was difficult for the ferroelectric domains in Tb2(MoO4)3 crystal to array regularly with repeated switching of the electric field.展开更多
Nd^3+ doped KLa(MoO4)2 single crystal with the size up to Ф25 × 40 mm^3 was grown by the Czochralski technique. The absorption and luminescence spectra of trivalent neodymium in KLa(MoO4)2 crystal were inve...Nd^3+ doped KLa(MoO4)2 single crystal with the size up to Ф25 × 40 mm^3 was grown by the Czochralski technique. The absorption and luminescence spectra of trivalent neodymium in KLa(MoO4)2 crystal were investigated at room temperature. The absorption and emission cross 10-20 sections are 3.02 ×10^-20 cm^2 at 808 nm and 20.01 × 10^-2 cm^2 at 1061 nm, respectively. The fluorescence lifetime is 164μs at room temperature.展开更多
This paper reported the crystal growth and spectroscopy characters of Cr^3+:Li2Mg2(MoO4)3. The refractive index of Cr^3+:Li2Mg2(MoO4)3 crystal is 1.87 and the hardness is 270 I-IV. This crystal shows broadband...This paper reported the crystal growth and spectroscopy characters of Cr^3+:Li2Mg2(MoO4)3. The refractive index of Cr^3+:Li2Mg2(MoO4)3 crystal is 1.87 and the hardness is 270 I-IV. This crystal shows broadband absorption property with peak wavelength at about 495 and 699 nm. The absorption crosssection is 14.75 × 10^-20 cm^2 at 495 nm and 9.63 ×10^-20 cm^2 at 699 nm, respectively. The crystal field strength and energy levels of Cr^3+ ion were calculated based on the spectroscopic data. The Cr^3+:Li2Mg2(MoO4)3 crystal shows broadband emission extending from 750 to 1300 nm even excited at 10 K. The room temperature emission cross section is 72×10^-20 cm^2 at 926 nm. A discussion of the relation between the spectroscopic properties and crystal field parameters of Cr^3+:Li2Mg2(MoO4)3 crystal was presented based on the solid state spectroscopytheory.展开更多
Raman scattering measurements of K_2 Sr(MoO_4)2 were performed in the temperature range of 25–750?C. The Raman spectrum of the low-temperature phase α-K_2 Sr(MoO_4)2 that was obtained by first-principle calcula...Raman scattering measurements of K_2 Sr(MoO_4)2 were performed in the temperature range of 25–750?C. The Raman spectrum of the low-temperature phase α-K_2 Sr(MoO_4)2 that was obtained by first-principle calculations indicated that the Raman bands in the wavenumber region of 250–500 cm-1 are related to Mo–O bending vibrations in MoO4 tetrahedra,while the Raman bands in the wavenumber region of 650–950 cm-1 are attributed to stretching vibrations of Mo–O bonds.The temperature-dependent Raman spectra reveal that K_2 Sr(MoO_4)2 exhibits two sets of modifications in the Raman spectra at ~ 150?C and ~ 475?C, attributed to structural phase transitions. The large change of the Raman spectra in the temperature range of 150?C to 475?C suggests structural instability of the medium-temperature phase β-K_2 Sr(MoO_4)2.展开更多
Optical characteristics and upconversion dynamics of Er3+ in Er3+/Yb3+:LiLa(MoO4)2 crystals were investigated. The absorption spectra, fluorescence spectra and the fluorescence decay curves were analyzed at room tempe...Optical characteristics and upconversion dynamics of Er3+ in Er3+/Yb3+:LiLa(MoO4)2 crystals were investigated. The absorption spectra, fluorescence spectra and the fluorescence decay curves were analyzed at room temperature. The infrared emission at 1538 nm and visible emissions at 520–569 and 640–670 nm, corresponding to 2H11/2,4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ ions, were simultaneously observed in Er3+/Yb3+:LiLa(MoO4)2 crystals under 976 nm excitation at room temperature. The maximal emiss...展开更多
基金This work was supported by the National Natural Science Foundation of China (60378031) and Key Project of Science and Technology of Fujian Province (2001H1007)
文摘The spectral parameters of Nd^3+ ions in Nd^3+-doped NaGd(MoO4)2 crystal have been investigated based on Judd-Ofelt theory and obtained as follows: The intensity parameters Ωeff are Ω2 = 24.77×10^20, Ω4 = 7.31×10^-20 and Ω6 = 6.91×10^-20 cm^2. The radiative lifetime is 100 μs, and the quantum efficiency is 93.9%. The fluorescence branch ratios were calculated to be β1 = 0.441, β2 = 0.469,β3 = 0.086 and β4=0.004.
基金the National Natural Science Foundation of China (No. 50672123)
文摘Single crystal of Li2Zn2(MoO4)3 has been grown from a flux of Li2MoO4 by the top-seeded solution-growth method, and its stnicture was refined by the Rietveld method. It belongs to the orthorhombic system, space group Pnma with a = 5.1114, b = 10.4906 and c = 17.6172A. Good agreement between the experimental and calculated profile (Rp = 6.69%, Rwp = 9.73% and Rexp = 6.58%) was reached.
基金the National Natural Science Foundation of China (No. 60378031)Key Project of Science and Technology of Fujian Province (2001F004)
文摘The title compound belongs to monoclinic, space group C2/c with a = 5.2694(1), b = 12.6659(4), c = 19.4108(2) A,β= 91.504(2)°, V = 1295.06(5) A^3, Z = 4 and Dc= 5.599 g/cm^3. The structure of BaGd2(MoO4)4 contains a MoO4 tetrahedron, a distorted GdO8 polyhedron, and Ba^2+ ions in a tenfold coordination. The GdO8 polyhedra are linked together through edge-sharing to give a two-dimensional Gd layer. The MoO4 tetrahedra connected to the Gd atoms are capped up and down the Gd layer through common oxygen apices, thus-forming a new Gd-Mo layer. Finally, the Gd-Mo layers are held together through bridging BaO10 polyhedra to form a three-dimensional framework. Since the Ba-μ3-O bond has a large average distance of 2.888 A, this structural characteristic will result in a cleavage along the (001) plane.
基金supported by the National Natural Science Foundation of China (50590401)
文摘By using Tb407 and MoO3 as starting materials, ferroelectric Tb2(MoO4)3 crystal was grown by the Czochralski method. The as-grown crystal was pale green color, transparent and crack-free. X-ray powder diffraction (XRPD), transmission spectrum, dielectric constant and polarization-electric field (P-E) hysteresis loop measurements were performed to characterize the crystal. The XRPD confirmed the as-grown crystal to be Tb2(MoO4)3. The transmission spectrum of the crystal showed that its transmittance in the entire visible and most near-infrared region was more than 70% except for an absorption peak around 486 nm. Obvious dielectric anomaly could be observed at low frequencies with increasing temperature through the dielectric constant measurement and the Curie temperature of Tb2(MoO4)3 crystal was determined to be 162.3℃ The unsaturated P-E hysteresis loops indicated that it was difficult for the ferroelectric domains in Tb2(MoO4)3 crystal to array regularly with repeated switching of the electric field.
基金This work was supported by the National Natural Science Foundation of China (50272066) and Key Project of Science and Technology of Fujian (2001H107)
文摘Nd^3+ doped KLa(MoO4)2 single crystal with the size up to Ф25 × 40 mm^3 was grown by the Czochralski technique. The absorption and luminescence spectra of trivalent neodymium in KLa(MoO4)2 crystal were investigated at room temperature. The absorption and emission cross 10-20 sections are 3.02 ×10^-20 cm^2 at 808 nm and 20.01 × 10^-2 cm^2 at 1061 nm, respectively. The fluorescence lifetime is 164μs at room temperature.
基金supported by the National Natural Science Foundation of China(Nos.61308085 and 61475158)
文摘This paper reported the crystal growth and spectroscopy characters of Cr^3+:Li2Mg2(MoO4)3. The refractive index of Cr^3+:Li2Mg2(MoO4)3 crystal is 1.87 and the hardness is 270 I-IV. This crystal shows broadband absorption property with peak wavelength at about 495 and 699 nm. The absorption crosssection is 14.75 × 10^-20 cm^2 at 495 nm and 9.63 ×10^-20 cm^2 at 699 nm, respectively. The crystal field strength and energy levels of Cr^3+ ion were calculated based on the spectroscopic data. The Cr^3+:Li2Mg2(MoO4)3 crystal shows broadband emission extending from 750 to 1300 nm even excited at 10 K. The room temperature emission cross section is 72×10^-20 cm^2 at 926 nm. A discussion of the relation between the spectroscopic properties and crystal field parameters of Cr^3+:Li2Mg2(MoO4)3 crystal was presented based on the solid state spectroscopytheory.
基金Project supported by the Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2018A0588 and KJ2017A625)
文摘Raman scattering measurements of K_2 Sr(MoO_4)2 were performed in the temperature range of 25–750?C. The Raman spectrum of the low-temperature phase α-K_2 Sr(MoO_4)2 that was obtained by first-principle calculations indicated that the Raman bands in the wavenumber region of 250–500 cm-1 are related to Mo–O bending vibrations in MoO4 tetrahedra,while the Raman bands in the wavenumber region of 650–950 cm-1 are attributed to stretching vibrations of Mo–O bonds.The temperature-dependent Raman spectra reveal that K_2 Sr(MoO_4)2 exhibits two sets of modifications in the Raman spectra at ~ 150?C and ~ 475?C, attributed to structural phase transitions. The large change of the Raman spectra in the temperature range of 150?C to 475?C suggests structural instability of the medium-temperature phase β-K_2 Sr(MoO_4)2.
基金Project supported by the National Natural Science Foundation of China (60808033) Natural Science Foundation of Jiangxi Province (2008GZW0012)
文摘Optical characteristics and upconversion dynamics of Er3+ in Er3+/Yb3+:LiLa(MoO4)2 crystals were investigated. The absorption spectra, fluorescence spectra and the fluorescence decay curves were analyzed at room temperature. The infrared emission at 1538 nm and visible emissions at 520–569 and 640–670 nm, corresponding to 2H11/2,4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ ions, were simultaneously observed in Er3+/Yb3+:LiLa(MoO4)2 crystals under 976 nm excitation at room temperature. The maximal emiss...