Spam is a universal problem with which everyone is familiar. A number of approaches are used for Spam filtering. The most common filtering technique is content-based filtering which uses the actual text of message to ...Spam is a universal problem with which everyone is familiar. A number of approaches are used for Spam filtering. The most common filtering technique is content-based filtering which uses the actual text of message to determine whether it is Spam or not. The content is very dynamic and it is very challenging to represent all information in a mathematical model of classification. For instance, in content-based Spam filtering, the characteristics used by the filter to identify Spam message are constantly changing over time. Na?ve Bayes method represents the changing nature of message using probability theory and support vector machine (SVM) represents those using different features. These two methods of classification are efficient in different domains and the case of Nepali SMS or Text classification has not yet been in consideration;these two methods do not consider the issue and it is interesting to find out the performance of both the methods in the problem of Nepali Text classification. In this paper, the Na?ve Bayes and SVM-based classification techniques are implemented to classify the Nepali SMS as Spam and non-Spam. An empirical analysis for various text cases has been done to evaluate accuracy measure of the classification methodologies used in this study. And, it is found to be 87.15% accurate in SVM and 92.74% accurate in the case of Na?ve Bayes.展开更多
In recent times among the multitude of attacks present in network system, DDoS attacks have emerged to be the attacks with the most devastating effects. The main objective of this paper is to propose a system that eff...In recent times among the multitude of attacks present in network system, DDoS attacks have emerged to be the attacks with the most devastating effects. The main objective of this paper is to propose a system that effectively detects DDoS attacks appearing in any networked system using the clustering technique of data mining followed by classification. This method uses a Heuristics Clustering Algorithm (HCA) to cluster the available data and Na?ve Bayes (NB) classification to classify the data and detect the attacks created in the system based on some network attributes of the data packet. The clustering algorithm is based in unsupervised learning technique and is sometimes unable to detect some of the attack instances and few normal instances, therefore classification techniques are also used along with clustering to overcome this classification problem and to enhance the accuracy. Na?ve Bayes classifiers are based on very strong independence assumptions with fairly simple construction to derive the conditional probability for each relationship. A series of experiment is performed using “The CAIDA UCSD DDoS Attack 2007 Dataset” and “DARPA 2000 Dataset” and the efficiency of the proposed system has been tested based on the following performance parameters: Accuracy, Detection Rate and False Positive Rate and the result obtained from the proposed system has been found that it has enhanced accuracy and detection rate with low false positive rate.展开更多
Executing customer analysis in a systemic way is one of the possible solutions for each enterprise to understand the behavior of consumer patterns in an efficient and in-depth manner.Further investigation of customer p...Executing customer analysis in a systemic way is one of the possible solutions for each enterprise to understand the behavior of consumer patterns in an efficient and in-depth manner.Further investigation of customer patterns helps thefirm to develop efficient decisions and in turn,helps to optimize the enter-prise’s business and maximizes consumer satisfaction correspondingly.To con-duct an effective assessment about the customers,Naive Bayes(also called Simple Bayes),a machine learning model is utilized.However,the efficacious of the simple Bayes model is utterly relying on the consumer data used,and the existence of uncertain and redundant attributes in the consumer data enables the simple Bayes model to attain the worst prediction in consumer data because of its presumption regarding the attributes applied.However,in practice,the NB pre-mise is not true in consumer data,and the analysis of these redundant attributes enables simple Bayes model to get poor prediction results.In this work,an ensem-ble attribute selection methodology is performed to overcome the problem with consumer data and to pick a steady uncorrelated attribute set to model with the NB classifier.In ensemble variable selection,two different strategies are applied:one is based upon data perturbation(or homogeneous ensemble,same feature selector is applied to a different subsamples derived from the same learning set)and the other one is based upon function perturbation(or heterogeneous ensemble different feature selector is utilized to the same learning set).Further-more,the feature set captured from both ensemble strategies is applied to NB indi-vidually and the outcome obtained is computed.Finally,the experimental outcomes show that the proposed ensemble strategies perform efficiently in choosing a steady attribute set and increasing NB classification performance efficiently.展开更多
A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrum...A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier.展开更多
The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parall...The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.展开更多
The task of classifying opinions conveyed in any form of text online is referred to as sentiment analysis.The emergence of social media usage and its spread has given room for sentiment analysis in our daily lives.Soc...The task of classifying opinions conveyed in any form of text online is referred to as sentiment analysis.The emergence of social media usage and its spread has given room for sentiment analysis in our daily lives.Social media applications and websites have become the foremost spring of data recycled for reviews for sentimentality in various fields.Various subject matter can be encountered on social media platforms,such as movie product reviews,consumer opinions,and testimonies,among others,which can be used for sentiment analysis.The rapid uncovering of these web contents contains divergence of many benefits like profit-making,which is one of the most vital of them all.According to a recent study,81%of consumers conduct online research prior to making a purchase.But the reviews available online are too huge and numerous for human brains to process and analyze.Hence,machine learning classifiers are one of the prominent tools used to classify sentiment in order to get valuable information for use in companies like hotels,game companies,and so on.Understanding the sentiments of people towards different commodities helps to improve the services for contextual promotions,referral systems,and market research.Therefore,this study proposes a sentiment-based framework detection to enable the rapid uncovering of opinionated contents of hotel reviews.A Naive Bayes classifier was used to process and analyze the dataset for the detection of the polarity of the words.The dataset from Datafiniti’s Business Database obtained from Kaggle was used for the experiments in this study.The performance evaluation of the model shows a test accuracy of 96.08%,an F1-score of 96.00%,a precision of 96.00%,and a recall of 96.00%.The results were compared with state-of-the-art classifiers and showed a promising performance andmuch better in terms of performancemetrics.展开更多
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this me...In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this method requires a lot of manpower and material resources,and the cost is relatively high.Therefore,research on the characteristics of rumors and automatic identification and classification of network message text is of great significance.This paper uses the Naive Bayes algorithm combined with Laplacian smoothing to identify rumors in social network texts.The first is to segment the text and remove the stop words after the word segmentation is completed.Because of the data-sensitive nature of Naive Bayes,this paper performs text preprocessing on the input data.Then a naive Bayes classifier is constructed,and the Laplacian smoothing method is introduced to solve the problem of using the naive Bayes model to estimate the zero probability in rumor recognition.Finally,experiments show that the Naive Bayes algorithm combined with Laplace smoothing can effectively improve the accuracy of rumor recognition.展开更多
The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the ...The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.展开更多
This paper considers the Bayes and hierarchical Bayes approaches for analyzing clinical data on response times with available values for one or more concomitant variables. Response times are assumed to follow simple e...This paper considers the Bayes and hierarchical Bayes approaches for analyzing clinical data on response times with available values for one or more concomitant variables. Response times are assumed to follow simple exponential distributions, with a different parameter for each patient. The analyses are carried out in case of progressive censoring assuming squared error loss function and gamma distribution as priors and hyperpriors. The possibilities of using the methodology in more general situations like dose- response modeling have also been explored. Bayesian estimators derived in this paper are applied to lung cancer data set with concomitant variables.展开更多
文摘Spam is a universal problem with which everyone is familiar. A number of approaches are used for Spam filtering. The most common filtering technique is content-based filtering which uses the actual text of message to determine whether it is Spam or not. The content is very dynamic and it is very challenging to represent all information in a mathematical model of classification. For instance, in content-based Spam filtering, the characteristics used by the filter to identify Spam message are constantly changing over time. Na?ve Bayes method represents the changing nature of message using probability theory and support vector machine (SVM) represents those using different features. These two methods of classification are efficient in different domains and the case of Nepali SMS or Text classification has not yet been in consideration;these two methods do not consider the issue and it is interesting to find out the performance of both the methods in the problem of Nepali Text classification. In this paper, the Na?ve Bayes and SVM-based classification techniques are implemented to classify the Nepali SMS as Spam and non-Spam. An empirical analysis for various text cases has been done to evaluate accuracy measure of the classification methodologies used in this study. And, it is found to be 87.15% accurate in SVM and 92.74% accurate in the case of Na?ve Bayes.
基金The authors would like to extend their gratitude to Department of Graduate StudiesNepal College of Information Technology for its constant support and motivationWe would also like to thank the Journal of Information Security for its feedbacks and reviews
文摘In recent times among the multitude of attacks present in network system, DDoS attacks have emerged to be the attacks with the most devastating effects. The main objective of this paper is to propose a system that effectively detects DDoS attacks appearing in any networked system using the clustering technique of data mining followed by classification. This method uses a Heuristics Clustering Algorithm (HCA) to cluster the available data and Na?ve Bayes (NB) classification to classify the data and detect the attacks created in the system based on some network attributes of the data packet. The clustering algorithm is based in unsupervised learning technique and is sometimes unable to detect some of the attack instances and few normal instances, therefore classification techniques are also used along with clustering to overcome this classification problem and to enhance the accuracy. Na?ve Bayes classifiers are based on very strong independence assumptions with fairly simple construction to derive the conditional probability for each relationship. A series of experiment is performed using “The CAIDA UCSD DDoS Attack 2007 Dataset” and “DARPA 2000 Dataset” and the efficiency of the proposed system has been tested based on the following performance parameters: Accuracy, Detection Rate and False Positive Rate and the result obtained from the proposed system has been found that it has enhanced accuracy and detection rate with low false positive rate.
文摘Executing customer analysis in a systemic way is one of the possible solutions for each enterprise to understand the behavior of consumer patterns in an efficient and in-depth manner.Further investigation of customer patterns helps thefirm to develop efficient decisions and in turn,helps to optimize the enter-prise’s business and maximizes consumer satisfaction correspondingly.To con-duct an effective assessment about the customers,Naive Bayes(also called Simple Bayes),a machine learning model is utilized.However,the efficacious of the simple Bayes model is utterly relying on the consumer data used,and the existence of uncertain and redundant attributes in the consumer data enables the simple Bayes model to attain the worst prediction in consumer data because of its presumption regarding the attributes applied.However,in practice,the NB pre-mise is not true in consumer data,and the analysis of these redundant attributes enables simple Bayes model to get poor prediction results.In this work,an ensem-ble attribute selection methodology is performed to overcome the problem with consumer data and to pick a steady uncorrelated attribute set to model with the NB classifier.In ensemble variable selection,two different strategies are applied:one is based upon data perturbation(or homogeneous ensemble,same feature selector is applied to a different subsamples derived from the same learning set)and the other one is based upon function perturbation(or heterogeneous ensemble different feature selector is utilized to the same learning set).Further-more,the feature set captured from both ensemble strategies is applied to NB indi-vidually and the outcome obtained is computed.Finally,the experimental outcomes show that the proposed ensemble strategies perform efficiently in choosing a steady attribute set and increasing NB classification performance efficiently.
基金supported by the Aviation Science Foundation of China(20152096019)
文摘A method is proposed to resolve the typical problem of air combat situation assessment. Taking the one-to-one air combat as an example and on the basis of air combat data recorded by the air combat maneuvering instrument, the problem of air combat situation assessment is equivalent to the situation classification problem of air combat data. The fuzzy C-means clustering algorithm is proposed to cluster the selected air combat sample data and the situation classification of the data is determined by the data correlation analysis in combination with the clustering results and the pilots' description of the air combat process. On the basis of semi-supervised naive Bayes classifier, an improved algorithm is proposed based on data classification confidence, through which the situation classification of air combat data is carried out. The simulation results show that the improved algorithm can assess the air combat situation effectively and the improvement of the algorithm can promote the classification performance without significantly affecting the efficiency of the classifier.
基金Project(KC18071)supported by the Application Foundation Research Program of Xuzhou,ChinaProjects(2017YFC0804401,2017YFC0804409)supported by the National Key R&D Program of China
文摘The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing time of classification on these data.In order to solve this problem,this paper proposes and implements a parallel naive Bayes algorithm(PNBA)for Chinese text classification based on Spark,a parallel memory computing platform for big data.This algorithm has implemented parallel operation throughout the entire training and prediction process of naive Bayes classifier mainly by adopting the programming model of resilient distributed datasets(RDD).For comparison,a PNBA based on Hadoop is also implemented.The test results show that in the same computing environment and for the same text sets,the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup ratio and scalability.Therefore,Spark-based parallel algorithms can better meet the requirement of large-scale Chinese text data mining.
文摘The task of classifying opinions conveyed in any form of text online is referred to as sentiment analysis.The emergence of social media usage and its spread has given room for sentiment analysis in our daily lives.Social media applications and websites have become the foremost spring of data recycled for reviews for sentimentality in various fields.Various subject matter can be encountered on social media platforms,such as movie product reviews,consumer opinions,and testimonies,among others,which can be used for sentiment analysis.The rapid uncovering of these web contents contains divergence of many benefits like profit-making,which is one of the most vital of them all.According to a recent study,81%of consumers conduct online research prior to making a purchase.But the reviews available online are too huge and numerous for human brains to process and analyze.Hence,machine learning classifiers are one of the prominent tools used to classify sentiment in order to get valuable information for use in companies like hotels,game companies,and so on.Understanding the sentiments of people towards different commodities helps to improve the services for contextual promotions,referral systems,and market research.Therefore,this study proposes a sentiment-based framework detection to enable the rapid uncovering of opinionated contents of hotel reviews.A Naive Bayes classifier was used to process and analyze the dataset for the detection of the polarity of the words.The dataset from Datafiniti’s Business Database obtained from Kaggle was used for the experiments in this study.The performance evaluation of the model shows a test accuracy of 96.08%,an F1-score of 96.00%,a precision of 96.00%,and a recall of 96.00%.The results were compared with state-of-the-art classifiers and showed a promising performance andmuch better in terms of performancemetrics.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
文摘In recent years,with the increasing popularity of social networks,rumors have become more common.At present,the solution to rumors in social networks is mainly through media censorship and manual reporting,but this method requires a lot of manpower and material resources,and the cost is relatively high.Therefore,research on the characteristics of rumors and automatic identification and classification of network message text is of great significance.This paper uses the Naive Bayes algorithm combined with Laplacian smoothing to identify rumors in social network texts.The first is to segment the text and remove the stop words after the word segmentation is completed.Because of the data-sensitive nature of Naive Bayes,this paper performs text preprocessing on the input data.Then a naive Bayes classifier is constructed,and the Laplacian smoothing method is introduced to solve the problem of using the naive Bayes model to estimate the zero probability in rumor recognition.Finally,experiments show that the Naive Bayes algorithm combined with Laplace smoothing can effectively improve the accuracy of rumor recognition.
基金supported by National Natural Science Foundation of China under Grant NO. 60903083Research fund for the doctoral program of higher education of China under Grant NO.20092303120005the Research Fund of ZTE Corporation
文摘The naive, Bayes (NB) model has been successfully used to tackle spare, and is very accurate. However, there is still room for improwment. We use a train on or near error (TONE) method in online NB to enhance the perfornmnee of NB and reduce the number of training emails. We conducted an experiment to determine the performanee of the improved algorithm by plotting (I-ROCA)% curves. The resuhs show that the proposed method improves the performanee of original NB.
文摘This paper considers the Bayes and hierarchical Bayes approaches for analyzing clinical data on response times with available values for one or more concomitant variables. Response times are assumed to follow simple exponential distributions, with a different parameter for each patient. The analyses are carried out in case of progressive censoring assuming squared error loss function and gamma distribution as priors and hyperpriors. The possibilities of using the methodology in more general situations like dose- response modeling have also been explored. Bayesian estimators derived in this paper are applied to lung cancer data set with concomitant variables.