Despite sufficient studies performed in non-primate animal models,there exists scanty information obtained from pilot trials in non-human primate animal models,severely hindering nanomaterials moving from basic resear...Despite sufficient studies performed in non-primate animal models,there exists scanty information obtained from pilot trials in non-human primate animal models,severely hindering nanomaterials moving from basic research into clinical practice.We herein present a pioneering demonstration of nanomaterials based optical imaging-guided surgical operation by using macaques as a typical kind of non-human primate-animal models.Typically,taking advantages of strong and stable fluorescence of the small-sized(diameter:~5 nm)silicon-based nanoparticles(SiNPs),lymphatic drainage patterns can be vividly visualized in a real-time manner,and lymph nodes(LN)are able to be sensitively detected and precisely excised from small animal models(e.g.,rats and rabbits)to non-human primate animal models(e.g.,cynomolgus macaque(Macaca fascicularis)and rhesus macaque(Macaca mulatta)).Compared to clinically used invisible near-infrared(NIR)lymphatic tracers(i.e.,indocyanine green(ICG);etc.),we fully indicate that the SiNPs feature unique advantages for naked-eye visible fluorescence-guided surgical operation in long-term manners.Thorough toxicological analysis in macaque models further provides confirming evidence of favorable biocompatibility of the SiNPs probes.We expect that our findings would facilitate the translation of nanomaterials from the laboratory to the clinic,especially in the field of cancer treatment.展开更多
Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(...Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(CH_(3))_(2)NH_(2)][Zn_(3)(bbip)(BTDI)1.5(OH)]·DMF·MeOH·3H_(2)O}n(JXUST-13, bbip = 2,6-bis(benzimidazol-1-yl)pyridine and H_(4)BTDI = 5,5-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid)with new 4,4,8-connceted topology has been successfully synthesized and structurally characterized. Importantly, JXUST-13 could recognize H_(2)PO_(4)-and acetylacetone(Acac) by obvious fluorescence blue shift and slight enhancement with the detection limits of 2.70 μmol/L and 0.21 mmol/L, respectively. In addition, JXUST-13 exhibits relatively good thermal stability, chemical stabilities as well as reusability, and the analytes could be distinguished by naked eye and fluorescence test paper. Remarkably, JXUST-13 is the first dual-responsive MOF sensor based on fluorescence blue shift for the detection of H_(2)PO_(4)-and Acac with good selectivity in a handy, economic, and environmentally friendly manner.展开更多
A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has b...A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has been synthesized.The adjacent Zn^(II)ions are linked through two BBIP ligands to form a[Zn_(2)(BBIP)_(2)]secondary building unit(SBU).The neighbouring SBUs are further connected by NDC^(2-)withμ2-η^(1):η^(1)andμ2-η^(1):η^(1):η^(1)bridging modes to form a two-dimensional(2D)framework.Topological analysis shows that JXUST-5 could be simplified as an uninodal fes topology with a point symbol of{4.8^(2)}.Furthermore,the 2D framework net could be extended through C-H···πinteraction to form the three-dimensional supramolecular structure.Luminescent experiments suggest that JXUST-5 could selectively and sensitively recognize Al^(3+)and Ga^(3+)through fluorescence enhancement effect along with a relatively large red shift.The detection limits for Al^(3+)and Ga^(3+)are 0.17 and 0.69 ppm,respectively.Interestingly,the sensing process for both Al^(3+)and Ga^(3+)could be directly observed with naked eyes under 365 nm UV lamp.Notably,JXUST-5 could be recycled at least five times as a fluorescent sensor toward Al^(3+)and Ga^(3+),which is the second example of turn-on MOF based fluorescent sensor toward Ga^(3+).展开更多
A new architecture, naked-eye ghost imaging via photoelectric feedback, is developed that avoids computer algorithm processing. Instead, the proposed scheme uses a photoelectric feedback loop to first realize the corr...A new architecture, naked-eye ghost imaging via photoelectric feedback, is developed that avoids computer algorithm processing. Instead, the proposed scheme uses a photoelectric feedback loop to first realize the correlation(multiplication) process of the traditional ghost imaging system. Then, the vision persistence effect of the naked eye is exploited to implement the integral process and to generate negative images. Two kinds of feedback circuits, the digital circuit and the analog circuit, are presented that can achieve a feedback operation. Based on this design, high-contrast real-time imaging of moving objects is obtained via a special pattern-scanning architecture on a low-speed light-modulation mask.展开更多
A simple colorimetric acetate ion receptor based on 3-methoxysalicylaldehyde-4'-nitrophenyl-hydrazone was synthesized in an ethanol solution through one step,and characterized by 1H NMR and elemental analyses.Its ani...A simple colorimetric acetate ion receptor based on 3-methoxysalicylaldehyde-4'-nitrophenyl-hydrazone was synthesized in an ethanol solution through one step,and characterized by 1H NMR and elemental analyses.Its anion-binding ability was examined by UV-Vis absorption spectroscopy in DMSO(dimethyl sulfoxide).The result shows that the compound has a high affinity for and a high selectivity toward acetate ions,and also an advantage of 'naked-eye' recognition of color changing from yellow to purple.展开更多
Exhaled ammonia(NH_(3))can be used as a crucial biomarker of kidney and liver diseases.However,the high humidity in the detection conditions remains a challenge for accurate detection by gas sensors.Herein,a copper-ba...Exhaled ammonia(NH_(3))can be used as a crucial biomarker of kidney and liver diseases.However,the high humidity in the detection conditions remains a challenge for accurate detection by gas sensors.Herein,a copper-based metal-organic framework(CH_(3)-Cu-BTC)with methyl(CH_(3)^(-))functionalization of trimesic acid was synthesized for NH_(3) colorimetric sensing.The CH_(3)-Cu-BTC exhibited a strong response for 5 ppm NH_(3) with high selectivity under high relative humidity(75%RH).Density functional theory(DFT)simulations indicated that the NH_(3) molecules interacted more strongly with CH_(3)-Cu-BTC than H_(2)O molecules did,and the corresponding color switching was attributed to the lone-pair electron in NH_(3) changing the coordination environment of Cu^(2+)ions,leading to an obviously visible color switching response from ruby green to blue.Based on the tailor-made pore chemistry,the precise detection of trace amounts of NH_(3) in exhaled air was realized through functionalized MOF materials.The strategy used in this study not only offers a new pathway for the rapid detection of low concentration NH_(3) under humid conditions,but also shows a method for early respiration diagnosis of kidney and liver diseases.展开更多
We consider a face-to-face videoconferencing system that uses a Kinect camera at each end of the link for 3D modeling and an ordinary2 D display for output. The Kinect camera allows a 3D model of each participant to b...We consider a face-to-face videoconferencing system that uses a Kinect camera at each end of the link for 3D modeling and an ordinary2 D display for output. The Kinect camera allows a 3D model of each participant to be transmitted;the(assumed static) background is sent separately.Furthermore, the Kinect tracks the receiver's head,allowing our system to render a view of the sender depending on the receiver's viewpoint. The resulting motion parallax gives the receivers a strong impression of 3D viewing as they move, yet the system only needs an ordinary 2D display. This is cheaper than a full3 D system, and avoids disadvantages such as the need to wear shutter glasses, VR headsets, or to sit in a particular position required by an autostereo display.Perceptual studies show that users experience a greater sensation of depth with our system compared to a typical 2D videoconferencing system.展开更多
A new chemosensor based on a Schiff base has been designed and synthesized. Its sensing behavior toward various metal ions was investigated by fluorescence and UV-Vis spectroscopic methods. The fluorescence of the sen...A new chemosensor based on a Schiff base has been designed and synthesized. Its sensing behavior toward various metal ions was investigated by fluorescence and UV-Vis spectroscopic methods. The fluorescence of the sensor was quenched and the color rapidly changed from canary yellow to brown after the addition of Cu2+, while no changes occurred after the addition of other metal ions, which contributes to the detection of Cu2+ with naked eyes. The fluorescence quantum yield of the ligand was calculated to be 0.52. The corresponding detection limit of Cu2+ was 5.721 × 10-7 mol/L, and the 1:1 binding mode of the sensor with Cu2+ was revealed by Job's plot.展开更多
A novel fluorescence probe for the detection of Cu2+ has been designed and synthesized, which is based on a ring-opening reaction of spirolactam triggered by Cu2+ . This probe exhibits excellent Cu2+ ion selectivity a...A novel fluorescence probe for the detection of Cu2+ has been designed and synthesized, which is based on a ring-opening reaction of spirolactam triggered by Cu2+ . This probe exhibits excellent Cu2+ ion selectivity as well as significant color changes visible to the naked eye at the concentration of 0.03 mM (ca. 2.0 mg/L), the WHO (World Health Organization) recommended level (2.0 mg/L) of Cu2+ ions in drinking water. This novel rhodamine-based fluorescence probe can be directly used to detect Cu2+ with satisfactory sensitivity and selectivity in aqueous solution.展开更多
A novel colorimetric chemosensor PBIOSi has been designed and synthesized. The addition of F to a THF solution of PBIOSi resulted in an obvious color change (from red to green) in a short time because of the specifi...A novel colorimetric chemosensor PBIOSi has been designed and synthesized. The addition of F to a THF solution of PBIOSi resulted in an obvious color change (from red to green) in a short time because of the specific cleavage of Si-O bond in PBIOSi by F-. It was interesting that PBIOSi showed excellent selectivity for F detection over other halides. The UV-Vis absorption and fluorescence were changed linearly with the concentration ofF over the range of 0- 10 μmol/L.展开更多
Here we report an example of a general strategy for the immobilization of various different photochromic spiropyran molecules on eco-friendly cheap nanomatrix.The spiropyrans are encapsulated in calcium salt oligomers...Here we report an example of a general strategy for the immobilization of various different photochromic spiropyran molecules on eco-friendly cheap nanomatrix.The spiropyrans are encapsulated in calcium salt oligomers-based gels by centrifugation,forming an inorganic oligomer-based gelatinous photoswitchable hybrid material.Ca^(2+)is also used to regulate the optical properties of spiropyrans through chelation.The oligomer-based gel can not only provide the space required for photoisomerization,but also reduce the interference of the surrounding environment on the photochromic properties.Moreover,a practical paper-based and colloidal flexible substrate platform is constructed for the removal and naked-eye detection of liquid and gaseous hydrazine at room temperature based on the reactivity of the formyl group on spiro-pyrans loaded in Ca3(PO4)2 oligomers.This general strategy can be used for other inorganic oligomer-based molecular switches and sensing systems.展开更多
The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.Ho...The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.However,the micro/nanomanufacturing of high-resolution optical display devices is the primary issue restricting their development.The manufacturing technology of micro/nanostructures,methods of display mechanisms,display materials,and mass production of display devices are major technical obstacles.To comprehensively understand the latest state-of-the-art and trigger new technological breakthroughs,this study reviews the recent research progress of master molds produced using nanoimprint technology for new optical devices,particularly AR glasses,new-generation light-emitting diode car lighting,and naked-eye 3D display mechanisms,and their manufacturing techniques of master molds.The focus is on the relationships among the manufacturing process,microstructure,and display of a new optical device.Nanoimprint master molds are reviewed for the manufacturing and application of new optical devices,and the challenges and prospects of the new optical device diffraction grating nanoimprint technology are discussed.展开更多
A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its co...A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.展开更多
基金the National Natural Science Foundation of China(Nos.21825402,31400860,22393932,T2321005,and 22204117)the Science and Technology Development Fund,Macao SAR(Nos.0002/2022/AKP and 0115/2023/RIA2)+3 种基金the National Key R&D Program of China(No.2023YFB3208200)the Natural Science Foundation of Jiangsu Province of China(Nos.BK20191417 and BK20170061)the Program for Jiangsu Specially Appointed Professors to Y.H.,a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)111 Project and Collaborative Innovation Center of Suzhou Nano Science and Technology(NANO-CIC).
文摘Despite sufficient studies performed in non-primate animal models,there exists scanty information obtained from pilot trials in non-human primate animal models,severely hindering nanomaterials moving from basic research into clinical practice.We herein present a pioneering demonstration of nanomaterials based optical imaging-guided surgical operation by using macaques as a typical kind of non-human primate-animal models.Typically,taking advantages of strong and stable fluorescence of the small-sized(diameter:~5 nm)silicon-based nanoparticles(SiNPs),lymphatic drainage patterns can be vividly visualized in a real-time manner,and lymph nodes(LN)are able to be sensitively detected and precisely excised from small animal models(e.g.,rats and rabbits)to non-human primate animal models(e.g.,cynomolgus macaque(Macaca fascicularis)and rhesus macaque(Macaca mulatta)).Compared to clinically used invisible near-infrared(NIR)lymphatic tracers(i.e.,indocyanine green(ICG);etc.),we fully indicate that the SiNPs feature unique advantages for naked-eye visible fluorescence-guided surgical operation in long-term manners.Thorough toxicological analysis in macaque models further provides confirming evidence of favorable biocompatibility of the SiNPs probes.We expect that our findings would facilitate the translation of nanomaterials from the laboratory to the clinic,especially in the field of cancer treatment.
基金supported by the National Natural Science Foundation of China (Nos. 22061019, 21861018, 22161019 and 12174172)the NSF of Jiangxi Province (No. 20202ACBL213001)+4 种基金Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(No. 20212BCD42018)Fujian Key Laboratory of Functional Marine Sensing Materials,Minjiang University (No. MJUKF-FMSM202010)the Youth Jinggang Scholars Program in Jiangxi Province (No.QNJG2019053)the Two Thousand Program in Jiangxi Province (No.jxsq2019201068)the Special Foundation for Postgraduate Innovation in Jiangxi Province (No. YC_(2)020-B155)。
文摘Fluorescence detecting both organic and inorganic analytes has aroused tremendous scientific interests, because fluorescence techniques have high sensitivity and are easy to operate. A new threedimensional(3D) MOF {[(CH_(3))_(2)NH_(2)][Zn_(3)(bbip)(BTDI)1.5(OH)]·DMF·MeOH·3H_(2)O}n(JXUST-13, bbip = 2,6-bis(benzimidazol-1-yl)pyridine and H_(4)BTDI = 5,5-(benzo[c][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid)with new 4,4,8-connceted topology has been successfully synthesized and structurally characterized. Importantly, JXUST-13 could recognize H_(2)PO_(4)-and acetylacetone(Acac) by obvious fluorescence blue shift and slight enhancement with the detection limits of 2.70 μmol/L and 0.21 mmol/L, respectively. In addition, JXUST-13 exhibits relatively good thermal stability, chemical stabilities as well as reusability, and the analytes could be distinguished by naked eye and fluorescence test paper. Remarkably, JXUST-13 is the first dual-responsive MOF sensor based on fluorescence blue shift for the detection of H_(2)PO_(4)-and Acac with good selectivity in a handy, economic, and environmentally friendly manner.
基金supported from the National Natural Science Foundation of China(Nos.22061019,21761012 and 21861018)the Natural Science Foundation of Jiangxi Province(Nos.20192BAB203001,20202ACBL213001,20192ACBL20013 and 20182BCB22010)+1 种基金the Youth Jinggang Scholars Program in Jiangxi Province(No.QNJG2019053)the Two Thousand Talents Program in Jiangxi Province(No.jxsq2019201068)。
文摘A novel ZnII-based metal-organic framework with the formula of{[Zn_(2)(BBIP)_(2)(NDC)_(2)]·H_(2)O}n(JXUST-5)derived from 3,5-bis(benzimidazol-1-yl)pyridine(BBIP)and 1,4-naphthalenedicarboxylic acid(H_(2)NDC)has been synthesized.The adjacent Zn^(II)ions are linked through two BBIP ligands to form a[Zn_(2)(BBIP)_(2)]secondary building unit(SBU).The neighbouring SBUs are further connected by NDC^(2-)withμ2-η^(1):η^(1)andμ2-η^(1):η^(1):η^(1)bridging modes to form a two-dimensional(2D)framework.Topological analysis shows that JXUST-5 could be simplified as an uninodal fes topology with a point symbol of{4.8^(2)}.Furthermore,the 2D framework net could be extended through C-H···πinteraction to form the three-dimensional supramolecular structure.Luminescent experiments suggest that JXUST-5 could selectively and sensitively recognize Al^(3+)and Ga^(3+)through fluorescence enhancement effect along with a relatively large red shift.The detection limits for Al^(3+)and Ga^(3+)are 0.17 and 0.69 ppm,respectively.Interestingly,the sensing process for both Al^(3+)and Ga^(3+)could be directly observed with naked eyes under 365 nm UV lamp.Notably,JXUST-5 could be recycled at least five times as a fluorescent sensor toward Al^(3+)and Ga^(3+),which is the second example of turn-on MOF based fluorescent sensor toward Ga^(3+).
基金supported by the Shaanxi Key Research and Development Project (No. 2019ZDLGY09-10)the Key Scientific and Technological Innovation Team of Shaanxi Province (No. 2018TD-024)+1 种基金the National Basic Research Program of China (973 Program)(No. 2015CB654602)the 111 Project of China(No. B14040)。
文摘A new architecture, naked-eye ghost imaging via photoelectric feedback, is developed that avoids computer algorithm processing. Instead, the proposed scheme uses a photoelectric feedback loop to first realize the correlation(multiplication) process of the traditional ghost imaging system. Then, the vision persistence effect of the naked eye is exploited to implement the integral process and to generate negative images. Two kinds of feedback circuits, the digital circuit and the analog circuit, are presented that can achieve a feedback operation. Based on this design, high-contrast real-time imaging of moving objects is obtained via a special pattern-scanning architecture on a low-speed light-modulation mask.
基金Supported by the National Natural Science Foundation of China(Nos.20371028,20671052)the Doctor Foundation of Tianjin Normal University,China(No.52LX31)
文摘A simple colorimetric acetate ion receptor based on 3-methoxysalicylaldehyde-4'-nitrophenyl-hydrazone was synthesized in an ethanol solution through one step,and characterized by 1H NMR and elemental analyses.Its anion-binding ability was examined by UV-Vis absorption spectroscopy in DMSO(dimethyl sulfoxide).The result shows that the compound has a high affinity for and a high selectivity toward acetate ions,and also an advantage of 'naked-eye' recognition of color changing from yellow to purple.
基金the financial support from the National Natural Science Foundation of China(Nos.22090062,22278287,22278288)the Shanxi Province 136 Revitalization Medical Project(General Surgery Department)+1 种基金the Shanxi Provincial Guiding Science and Technology Special Project(No.2021XM42)the Basic Research Program of Shanxi Province(No.202103021224341)。
文摘Exhaled ammonia(NH_(3))can be used as a crucial biomarker of kidney and liver diseases.However,the high humidity in the detection conditions remains a challenge for accurate detection by gas sensors.Herein,a copper-based metal-organic framework(CH_(3)-Cu-BTC)with methyl(CH_(3)^(-))functionalization of trimesic acid was synthesized for NH_(3) colorimetric sensing.The CH_(3)-Cu-BTC exhibited a strong response for 5 ppm NH_(3) with high selectivity under high relative humidity(75%RH).Density functional theory(DFT)simulations indicated that the NH_(3) molecules interacted more strongly with CH_(3)-Cu-BTC than H_(2)O molecules did,and the corresponding color switching was attributed to the lone-pair electron in NH_(3) changing the coordination environment of Cu^(2+)ions,leading to an obviously visible color switching response from ruby green to blue.Based on the tailor-made pore chemistry,the precise detection of trace amounts of NH_(3) in exhaled air was realized through functionalized MOF materials.The strategy used in this study not only offers a new pathway for the rapid detection of low concentration NH_(3) under humid conditions,but also shows a method for early respiration diagnosis of kidney and liver diseases.
基金supported by the National Hightech R&D Program of China (Project No. 2013AA013903)the National Natural Science Foundation of China (Project Nos. 61133008 and 61272226)+1 种基金Research Grant of Beijing Higher Institution Engineering Research Center, an EPSRC Travel Grantthe Research and Enterprise Investment Fund of Cardiff Metropolitan University
文摘We consider a face-to-face videoconferencing system that uses a Kinect camera at each end of the link for 3D modeling and an ordinary2 D display for output. The Kinect camera allows a 3D model of each participant to be transmitted;the(assumed static) background is sent separately.Furthermore, the Kinect tracks the receiver's head,allowing our system to render a view of the sender depending on the receiver's viewpoint. The resulting motion parallax gives the receivers a strong impression of 3D viewing as they move, yet the system only needs an ordinary 2D display. This is cheaper than a full3 D system, and avoids disadvantages such as the need to wear shutter glasses, VR headsets, or to sit in a particular position required by an autostereo display.Perceptual studies show that users experience a greater sensation of depth with our system compared to a typical 2D videoconferencing system.
基金Supported by the National Natural Science Foundation of China(Nos.21166008, 21261008), the Natural Science Foundation of Hainan Province, China(No.209001), the Youth Fund of Hainan University, China(No.qnjj 1169) and the Technology Support Program of the Jiangsu Province, China(No.SBE 201077304).
文摘A new chemosensor based on a Schiff base has been designed and synthesized. Its sensing behavior toward various metal ions was investigated by fluorescence and UV-Vis spectroscopic methods. The fluorescence of the sensor was quenched and the color rapidly changed from canary yellow to brown after the addition of Cu2+, while no changes occurred after the addition of other metal ions, which contributes to the detection of Cu2+ with naked eyes. The fluorescence quantum yield of the ligand was calculated to be 0.52. The corresponding detection limit of Cu2+ was 5.721 × 10-7 mol/L, and the 1:1 binding mode of the sensor with Cu2+ was revealed by Job's plot.
基金supported in partial by the National Natural Science Foundation of China (20921063 & 20877090)the National High Technology Research and Development Program (863 Program, 2007AA06A407)
文摘A novel fluorescence probe for the detection of Cu2+ has been designed and synthesized, which is based on a ring-opening reaction of spirolactam triggered by Cu2+ . This probe exhibits excellent Cu2+ ion selectivity as well as significant color changes visible to the naked eye at the concentration of 0.03 mM (ca. 2.0 mg/L), the WHO (World Health Organization) recommended level (2.0 mg/L) of Cu2+ ions in drinking water. This novel rhodamine-based fluorescence probe can be directly used to detect Cu2+ with satisfactory sensitivity and selectivity in aqueous solution.
基金supported by the National Natural Science Foundation of China (Nos. 21272069, 20672035), the Fundamental Research Funds for the Central Universities and Baihehua Group.
文摘A novel colorimetric chemosensor PBIOSi has been designed and synthesized. The addition of F to a THF solution of PBIOSi resulted in an obvious color change (from red to green) in a short time because of the specific cleavage of Si-O bond in PBIOSi by F-. It was interesting that PBIOSi showed excellent selectivity for F detection over other halides. The UV-Vis absorption and fluorescence were changed linearly with the concentration ofF over the range of 0- 10 μmol/L.
基金supported by the National Natural Science Foundation of China(Nos.21173074 and 112074322)the Natural Science Foundation of Hunan Province(No.2018JJ2034)。
文摘Here we report an example of a general strategy for the immobilization of various different photochromic spiropyran molecules on eco-friendly cheap nanomatrix.The spiropyrans are encapsulated in calcium salt oligomers-based gels by centrifugation,forming an inorganic oligomer-based gelatinous photoswitchable hybrid material.Ca^(2+)is also used to regulate the optical properties of spiropyrans through chelation.The oligomer-based gel can not only provide the space required for photoisomerization,but also reduce the interference of the surrounding environment on the photochromic properties.Moreover,a practical paper-based and colloidal flexible substrate platform is constructed for the removal and naked-eye detection of liquid and gaseous hydrazine at room temperature based on the reactivity of the formyl group on spiro-pyrans loaded in Ca3(PO4)2 oligomers.This general strategy can be used for other inorganic oligomer-based molecular switches and sensing systems.
基金supported by the Fundamental Key Research Project of Shenzhen(Grant No.JCYJ20210324115806017)the Innovation and Entrepreneurship Project for Overseas High-Level Talents of Shenzhen(Grant No.KQJSCX20180328095603847)+1 种基金the National Natural Science Foundation of China(Grant No.51805331)the National Key R&D Program of China(Grant No.6142005180401).
文摘The consumer demand for emerging technologies such as augmented reality(AR),autopilot,and three-dimensional(3D)internet has rapidly promoted the application of novel optical display devices in innovative industries.However,the micro/nanomanufacturing of high-resolution optical display devices is the primary issue restricting their development.The manufacturing technology of micro/nanostructures,methods of display mechanisms,display materials,and mass production of display devices are major technical obstacles.To comprehensively understand the latest state-of-the-art and trigger new technological breakthroughs,this study reviews the recent research progress of master molds produced using nanoimprint technology for new optical devices,particularly AR glasses,new-generation light-emitting diode car lighting,and naked-eye 3D display mechanisms,and their manufacturing techniques of master molds.The focus is on the relationships among the manufacturing process,microstructure,and display of a new optical device.Nanoimprint master molds are reviewed for the manufacturing and application of new optical devices,and the challenges and prospects of the new optical device diffraction grating nanoimprint technology are discussed.
文摘A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.