Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4....Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.5:1, total feed of 4.9 m3/h, and plasma power of 25 kW. The samples were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma - mass spectrometry (ICP-MS), inductively coupled plasma - atomic emission spectrometry (ICP-AES), inductive combustion infrared absorption (ICIA) and infrared thermal conductivity of oxygen and nitrogen analyzer (ITCA). The results show that the boron powders have different crystal structures with higher dispersion and purity. The average diameter is about 50 nm, and the purity is 90.29% or so. This new technology can use simple process to produce high quality boron powders, and is feasible for industrial production.展开更多
The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results...The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results indicate that with the annealing temperature and the doped concentration rising, the powders' particle sizes will increase and decrease respectively. When annealing temperature is 900℃and doped concentration is 7%, the phase is cubic without other phases, and the particle size of power is 43 .34 nm.展开更多
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ...The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.展开更多
Mn-Zn spinel ferrites were synthesized by sol-gel method. Effects of calcined temperature on structure and particle size of MnZnFe2O4 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM)...Mn-Zn spinel ferrites were synthesized by sol-gel method. Effects of calcined temperature on structure and particle size of MnZnFe2O4 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns indicate that the ultra fine Mn-Zn ferrite exhibits a spinel crystal structure. SEM images show that the powder fired at 900℃for 2 h has an average diameter of 60 ~ 90 nm. The particle size becomes larger with the increasing of calcined temperature and the distribution of particle becomes even more homogeneous. Sintering behaviors of synthesized ferrite powders depend on the powder characteristics and high temperatures have induced the good crystallization of particles.展开更多
For the preparation of copper nanoparticles several methods, i.e., thermal reduction, mechanical attrition, chemical reduction metal vapour synthesis, radiation methods, laser ablation and micro emulsion techniques we...For the preparation of copper nanoparticles several methods, i.e., thermal reduction, mechanical attrition, chemical reduction metal vapour synthesis, radiation methods, laser ablation and micro emulsion techniques were developed in the past. Electrolytic deposition is one of the most suitable, simplest and low cost methods which are used for wide range of materials. In the present investigations, efforts were put to produce copper nano powder using electrolytic technique. It could be possible to obtain near nano copper powder of 258 nm size using high cathode current density of 1100 A/m2 in sulphate bath. The specific surface area and shape of the particles were found to be 23.2 m2/g and irregular, respectively.展开更多
ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, ...ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.展开更多
Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as oper...Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as operation pressure, cross-flow velocity, and slurry concentration, were examined and optimized. The shape and size of particles influenced the structure of the filter cake, leading to different permeation flux for different systems. The results demonstrated that washing using ceramic membranes is superior to the traditional plate-and-frame filtration and could be considered an advanced technique for ultra-fine powder preparation by wet-chemical method.展开更多
基金supported in part by the National Centre of Analysis and Testing for Nonferrous Metal & Electronic Material for Elementary Analysis, Beijing, China
文摘Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.5:1, total feed of 4.9 m3/h, and plasma power of 25 kW. The samples were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma - mass spectrometry (ICP-MS), inductively coupled plasma - atomic emission spectrometry (ICP-AES), inductive combustion infrared absorption (ICIA) and infrared thermal conductivity of oxygen and nitrogen analyzer (ITCA). The results show that the boron powders have different crystal structures with higher dispersion and purity. The average diameter is about 50 nm, and the purity is 90.29% or so. This new technology can use simple process to produce high quality boron powders, and is feasible for industrial production.
文摘The nano-sized BaTiO3:La3+ powders were prepared by sol-gel process using butyl phthalate, barium acetate and lanthanum oxide as raw material, and these samples were tested by means of TG-DTA, XRD and SEM. The results indicate that with the annealing temperature and the doped concentration rising, the powders' particle sizes will increase and decrease respectively. When annealing temperature is 900℃and doped concentration is 7%, the phase is cubic without other phases, and the particle size of power is 43 .34 nm.
文摘The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.
基金Project supported by the Fund for Harbin Young Scholars (2005AFQXJ031)
文摘Mn-Zn spinel ferrites were synthesized by sol-gel method. Effects of calcined temperature on structure and particle size of MnZnFe2O4 were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns indicate that the ultra fine Mn-Zn ferrite exhibits a spinel crystal structure. SEM images show that the powder fired at 900℃for 2 h has an average diameter of 60 ~ 90 nm. The particle size becomes larger with the increasing of calcined temperature and the distribution of particle becomes even more homogeneous. Sintering behaviors of synthesized ferrite powders depend on the powder characteristics and high temperatures have induced the good crystallization of particles.
文摘For the preparation of copper nanoparticles several methods, i.e., thermal reduction, mechanical attrition, chemical reduction metal vapour synthesis, radiation methods, laser ablation and micro emulsion techniques were developed in the past. Electrolytic deposition is one of the most suitable, simplest and low cost methods which are used for wide range of materials. In the present investigations, efforts were put to produce copper nano powder using electrolytic technique. It could be possible to obtain near nano copper powder of 258 nm size using high cathode current density of 1100 A/m2 in sulphate bath. The specific surface area and shape of the particles were found to be 23.2 m2/g and irregular, respectively.
基金financially supported by National Natural Science Foundation of China(Grant No.51372193)Natural Science Basic Research Fund of Shaanxi Province(Grant No.2014JM6224)
文摘ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.
基金financially supported by the Ministry of Science and Technology of China (Contract No. 2003CB615700)the Foundation of Science and Technology of the Educational Office of Anhui province, China (Contract No. 2005kj138)
文摘Washing using ceramic micro-filtration membranes was studied in the preparation of nano-sized TiO2 and A1203 powder precursors obtained by wet chemical methods. The key parameters for the washing process, such as operation pressure, cross-flow velocity, and slurry concentration, were examined and optimized. The shape and size of particles influenced the structure of the filter cake, leading to different permeation flux for different systems. The results demonstrated that washing using ceramic membranes is superior to the traditional plate-and-frame filtration and could be considered an advanced technique for ultra-fine powder preparation by wet-chemical method.