This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie...This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.展开更多
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi...WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.展开更多
Nano-sized silica particles were modified with methacryloxy-propyltrimethoxysilane(MPS) followed by in situ copolymerization of methyl methacrylate(MMA) and butyl acrylate(BA).These modified nanoparticles were compoun...Nano-sized silica particles were modified with methacryloxy-propyltrimethoxysilane(MPS) followed by in situ copolymerization of methyl methacrylate(MMA) and butyl acrylate(BA).These modified nanoparticles were compounded with polypropylene(PP) to prepare PP/silica nanocomposites.PMMA grafted on nano-silica enhances the dispersion of the nanoparticles and interfacial adhesion,decreases the size of PP spherulites in nanocomposites and leads to increasing the Young's modulus and toughness of PP/silica nanocomp...展开更多
Al6061matrix with different amounts of nano-silver(1%and2%)was produced by stir-casting method.Producedsamples were characterized by hardness,tensile,compression and wear tests.The hardness of the specimens at room te...Al6061matrix with different amounts of nano-silver(1%and2%)was produced by stir-casting method.Producedsamples were characterized by hardness,tensile,compression and wear tests.The hardness of the specimens at room temperature wasmeasured by Brinnell hardness testing machine.The magnitude of hardness increased evidently with the function of the mass fractionof the nano-Ag particle.The polished specimens were examined with an optical microscope.The fracture surfaces of tensile andcompressive specimens were further examined by scanning electron microscopy.Wear mechanisms were discussed based on thescanning electron microscopy observations of worn surface and wear debris morphology.There is an increase in compressivestrength,ultimate tensile strength,elongation and wear resistance of the Al?Ag composites compared with base alloy.The executionof stir-casting technique is relatively homogenous and fine microstructure which improves the addition of reinforcement material inthe molten metal.The results show that Al6061?nano-silver which is the best combination of hardness can replace the conventionalmaterial for better performance and longer life.展开更多
Oleic acid (OA)-modified CaCO3 nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed...Oleic acid (OA)-modified CaCO3 nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed that OA attached to the surface of CaCO3 nanoparticles with the ionic bond. Effect of OA concentration on the dispersion stability of CaCO3 in heptane was also studied, and the result indicated that modified CaCO3 nanoparticles dispersed in heptane more stably than unmodified ones. The optimal proportion of OA to CaCO3 was established. The effect of modified CaCO3 nanoparticles on crystallization behavior of polypropylene (PP) was studied by means of DSC. It was found that CaCO3 significantly increased the crystallization temperature, crystallization degree and crystallization rate of PP, and the addition of modified CaCO3 nanoparticles can lead to the formation of β-crystal PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the flexural strength increased by about 20%.展开更多
Oleic acid OA-modified CaCO3 nanoparticles were prepared using surface modification method. In- frared spectroscopy IR was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed t...Oleic acid OA-modified CaCO3 nanoparticles were prepared using surface modification method. In- frared spectroscopy IR was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed that OA attached to the surface of CaCO3 nanoparticles with the ionic bond. Effect of OA concentration on the dispersion stability of CaCO3 in heptane was also studied, and the result indicated that modified CaCO3 nanoparticles dispersed in heptane more stably than unmodified ones. The optimal proportion of OA to CaCO3 was established. The effect of modified CaCO3 nanoparticles on crystallization behavior of polypropylene PP was studied by means of DSC. It was found that CaCO3 significantly increased the crystallization temperature, crystal- lization degree and crystallization rate of PP, and the addition of modified CaCO3 nanoparticles can lead to the for- mation of β-crystal PP. Effect of the modified CaCO3 content on mechanical properties of PPCaCO3 nanocompo- sites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical proper- ties of PP. In comparison with PP, the impact strength of PPCaCO3 nanocomposites increased by about 65% and the flexural strength increased by about 20%.展开更多
Nano-SiO2/polypropylene composite was prepared by melt-blending process. The nano-SiO2 particles were organized by wet process surface treatment with silane coupling agent KH-570. The effect of mass fraction of nano-S...Nano-SiO2/polypropylene composite was prepared by melt-blending process. The nano-SiO2 particles were organized by wet process surface treatment with silane coupling agent KH-570. The effect of mass fraction of nano-SiO2 particles and dosage of KH-570 on the toughening and strengthening of PP matrix were investigated based on the fractography of impact notch and the analysis of crystal structure by X-ray and dispersive structure of nano-SiO2 by TEM. Results show that the impact and flexural strength and modulus of the composite are improved obviously with low loading of nano-SiO2 (3 wt%-5 wt%), and the izod impact strength of PP increases twice with 4 wt% nano-SiO2. The nano-SiO2 particles treated can disperse into the matrix resin, which has evident heterogeneous nucleation effects on the crystallization of PP. The optimal toughening and strengthening effects of PP matrix can be obtained when the content of nano-SiO2 and KH-570 are 4 wt% and 3 wt%, respectively.展开更多
Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC...Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.展开更多
Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites...Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites scaffold was investigated and analyzed. The results show that the effects of porous structure on the bending strength, modulus and curves of stress and strain were obvious. Compared with nonporous sample, the curves of stress and strain of porous sample show more rough, and alternative phenomenon of stress increase and stress relaxation appears. It is strongly suggested that the fracture model of C/PLA/nano-HA composites scaffold transforms from the local to global load due to the porous structure.展开更多
The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite ...The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature展开更多
Many DNA?based devices need to build stable and controllable DNA films on surfaces. However, the most com?monly used method of film characterization, namely, the probe?like microscopes which may destroy the sample and...Many DNA?based devices need to build stable and controllable DNA films on surfaces. However, the most com?monly used method of film characterization, namely, the probe?like microscopes which may destroy the sample and substrate. Surface Forces Apparatus(SFA) technique, specializing in surface interaction studies, is introduced to investigate the e ects of DNA concentration on the formation of single?stranded DNA(ss?DNA) film. The result demonstrates that 50 ng/μL is the lowest concentration that ss?DNA construct a dense layer on mica. Besides, it is also indicated that at di erent DNA concentrations, ss?DNA exhibit diverse morphology: lying flat on surface at 50 ng/μL while forming bilayer or cross?link at 100 ng/μL, and these ss?DNA structures are stable enough due to the repeatabil?ity even under the load of 15 mN/m. At the same time, an obvious adhesion force is measured:/m at 100 ng/μL, respectively, which is attributed to the ion?correlation e ect. M-6.5 mN/m at 50 ng/μL and-5.3 mNoreover, the atomic force microscopy(AFM) images reveal the entire surface is covered with wormlike ss?DNA and the measured surface roughness(1.8±0.2 nm) also matches well with the film thickness by SFA. The desorption behaviors of ss?DNA layer from mica surface occur by adding sodium salt into gap bu er, which is mainly ascribed to the decreased ion?ion cor?relation force. This paper employing SFA and AFM techniques to characterize the DNA film with flexibility and stable mechanical ability achieved by ion bridging method, is helpful to fabricate the DNA?based devices in nanoscale.展开更多
Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and T...Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and TEM; and the micro mechanical properties were tested by nano-indentation technique. The results show that 56% of particles in the solution are dispersed in size of less than 100nm, the content of nanoparticles co-deposited in the coating doubles and structure of the coating is more compact and uniform than that of Ni coating. Nano-SiO2/Ni coating exhibits excellent micro mechanical properties, and the nanohardness and elastic modulus are 7.81GPa and 198GPa, respectively, which are attributed to finer crystal strengthening, dispersion strengthening and high-density dislocation strengthening of nano-SiO2 particles to the composite coatings.展开更多
The idea of adding reinforcing materials, or fillers, to polymers has been around for many decades. The reason for the creation of polymer composite materials came about due of the need for materials with specific pro...The idea of adding reinforcing materials, or fillers, to polymers has been around for many decades. The reason for the creation of polymer composite materials came about due of the need for materials with specific properties for specific applications. For example, composite materials are unique in their ability to allow brittle and ductile materials to become softer and stronger. It is expected that good tribological properties can be obtained for polymers filled with nano-scale fillers. A soft plastic can become harder and stronger by the addition of a light weight high stiffness material. In the present work, the effect of adding different percentages of carbon nano-particulates to polystyrene (PS) on the mechanical properties of nano-composites produced was investigated. Based on the experimental observations, it was found that as the percentage of the carbon nano-particulates (CNPS) increased hardness increased and consequently friction coefficient remarkably decreased.展开更多
The current study focused on the utilization of local clay for synthesis and characterization of meta-kaolin based geopolymers with and without nano-silica. The control geopolymers, for a compressive strength of 30 MP...The current study focused on the utilization of local clay for synthesis and characterization of meta-kaolin based geopolymers with and without nano-silica. The control geopolymers, for a compressive strength of 30 MPa, were optimized by using Liquid/Solid ratio of 0.55, NaOH concentration of 10 M and curing at 80<span style="white-space:nowrap;">°</span>C. The nano silica was added in an extended range of 1%, 2%, 3%, 5%, 7% and 10%. The synthesized nano-silica metakaolin based geopolymers w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> investigated by using compressive strength, XRD, XRF, FTIR, SEM, MIP, TG, UV/VIS spectroscopy, in addition to density, water absorption and initial setting times. The results indicated an increase in the compressive strength value with the incorporation of nano-silica in geopolymer mixes until the optimum percentage of 5%, while the 10% addition of nano-silica decreased the compressive strength by 5% as compared to the control geopolymer. The increase in the compressive strength was accredited to the increase in the content of N-A-S-H gel and the amorphous structure as shown by XRD and FTIR analysis. In addition, the optical transmittance analysis, MIP and SEM scans along with the results of density and water absorption have clearly shown the densification of the matrix formed for the optimal percentage of nano-silica. However, the initial setting time was found to reduce substantially with increase of nano-silica content. Moreover, the TG results have shown the 5% nano-added geopolymers to have greater thermal stability as compared to reference geopolymer</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. Finally, the adopted methodology in this research has shown that 5% nano-silica, is the optimal result for the synthesis and the production of local meta kaolin based geopolymer, with regard to the improvement of physical properties, micro structure and compressive strength.</span></span></span>展开更多
TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron micros...TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.展开更多
The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,...The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...展开更多
The influence of Sm (Samarium) content on microstructure and mechanical properties of recycled die-cast YLl12 aluminum alloys was investigated. The results show that many small Sm-rich particles form in the recycled...The influence of Sm (Samarium) content on microstructure and mechanical properties of recycled die-cast YLl12 aluminum alloys was investigated. The results show that many small Sm-rich particles form in the recycled die-cast YLl12 alloys with Sm addition. At the same time, the secondary dendrite arm spacing in the YLl12 alloys modified with Sm is smaller than that of the unmodified alloy. The eutectic Si of recycled die- cast YL112-xSm alloys transforms from coarse acicular morphology to fine fibres. Mechanical properties of the investigated recycled die-cast YLl12 aluminum alloys are enhanced with Sm addition, and a maximal ultimate tensile strength value (276 MPa) and elongation (3.76%) are achieved at a Sm content of 0.6wt.%. Due to the modification of eutectic Si by Sm, numerous tearing ridges and tiny dimples on the fractures of tensile samples are observed.展开更多
Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtai...Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtained. The ultrasonic vibration introduced into soldering could influence the migration of Si particles and the microstructure of solidified Zn - Al based alloys. Both the distribution of Si particles and microstructure of the solidified Zn - Al based alloys affected the shear strength of joints. The shear strength increased with the ultrasonic vibration time. The highest average shear strength of joints reached to -68.5 MPa. Transcrystalline rupture mode was observed on the fracture surface.展开更多
Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound ...Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.展开更多
Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si...Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.展开更多
文摘This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.
基金Funded by the National Key Research and Development Plan of China(No.2017YFB0305900)。
文摘WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30.
基金supported by the National Natural Science Foundation of China(No50573026)Program forNew Century Excellent Talents in Universities of China(NCET-05-0640)Opening Fund of Hubei Key Laboratory ofNovel Reactor & Green Chemical Technology(NoSQ2004-15)
文摘Nano-sized silica particles were modified with methacryloxy-propyltrimethoxysilane(MPS) followed by in situ copolymerization of methyl methacrylate(MMA) and butyl acrylate(BA).These modified nanoparticles were compounded with polypropylene(PP) to prepare PP/silica nanocomposites.PMMA grafted on nano-silica enhances the dispersion of the nanoparticles and interfacial adhesion,decreases the size of PP spherulites in nanocomposites and leads to increasing the Young's modulus and toughness of PP/silica nanocomp...
文摘Al6061matrix with different amounts of nano-silver(1%and2%)was produced by stir-casting method.Producedsamples were characterized by hardness,tensile,compression and wear tests.The hardness of the specimens at room temperature wasmeasured by Brinnell hardness testing machine.The magnitude of hardness increased evidently with the function of the mass fractionof the nano-Ag particle.The polished specimens were examined with an optical microscope.The fracture surfaces of tensile andcompressive specimens were further examined by scanning electron microscopy.Wear mechanisms were discussed based on thescanning electron microscopy observations of worn surface and wear debris morphology.There is an increase in compressivestrength,ultimate tensile strength,elongation and wear resistance of the Al?Ag composites compared with base alloy.The executionof stir-casting technique is relatively homogenous and fine microstructure which improves the addition of reinforcement material inthe molten metal.The results show that Al6061?nano-silver which is the best combination of hardness can replace the conventionalmaterial for better performance and longer life.
基金Supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars.
文摘Oleic acid (OA)-modified CaCO3 nanoparticles were prepared using surface modification method. Infrared spectroscopy (IR) was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed that OA attached to the surface of CaCO3 nanoparticles with the ionic bond. Effect of OA concentration on the dispersion stability of CaCO3 in heptane was also studied, and the result indicated that modified CaCO3 nanoparticles dispersed in heptane more stably than unmodified ones. The optimal proportion of OA to CaCO3 was established. The effect of modified CaCO3 nanoparticles on crystallization behavior of polypropylene (PP) was studied by means of DSC. It was found that CaCO3 significantly increased the crystallization temperature, crystallization degree and crystallization rate of PP, and the addition of modified CaCO3 nanoparticles can lead to the formation of β-crystal PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the flexural strength increased by about 20%.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars
文摘Oleic acid OA-modified CaCO3 nanoparticles were prepared using surface modification method. In- frared spectroscopy IR was used to investigate the structure of the modified CaCO3 nanoparticles, and the result showed that OA attached to the surface of CaCO3 nanoparticles with the ionic bond. Effect of OA concentration on the dispersion stability of CaCO3 in heptane was also studied, and the result indicated that modified CaCO3 nanoparticles dispersed in heptane more stably than unmodified ones. The optimal proportion of OA to CaCO3 was established. The effect of modified CaCO3 nanoparticles on crystallization behavior of polypropylene PP was studied by means of DSC. It was found that CaCO3 significantly increased the crystallization temperature, crystal- lization degree and crystallization rate of PP, and the addition of modified CaCO3 nanoparticles can lead to the for- mation of β-crystal PP. Effect of the modified CaCO3 content on mechanical properties of PPCaCO3 nanocompo- sites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical proper- ties of PP. In comparison with PP, the impact strength of PPCaCO3 nanocomposites increased by about 65% and the flexural strength increased by about 20%.
基金Funded by the Commission of Science Technology and Industry for National Defense(No.93013)
文摘Nano-SiO2/polypropylene composite was prepared by melt-blending process. The nano-SiO2 particles were organized by wet process surface treatment with silane coupling agent KH-570. The effect of mass fraction of nano-SiO2 particles and dosage of KH-570 on the toughening and strengthening of PP matrix were investigated based on the fractography of impact notch and the analysis of crystal structure by X-ray and dispersive structure of nano-SiO2 by TEM. Results show that the impact and flexural strength and modulus of the composite are improved obviously with low loading of nano-SiO2 (3 wt%-5 wt%), and the izod impact strength of PP increases twice with 4 wt% nano-SiO2. The nano-SiO2 particles treated can disperse into the matrix resin, which has evident heterogeneous nucleation effects on the crystallization of PP. The optimal toughening and strengthening effects of PP matrix can be obtained when the content of nano-SiO2 and KH-570 are 4 wt% and 3 wt%, respectively.
基金Funded by the National Natural Science Foundation of China(No.50979016)
文摘Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value.
基金Project(30870609) supported by the National Natural Science Foundation of ChinaProjects(KJ081205 KJ091213) supported by the Natural Science Foundation of Chongqing Education Committee, China
文摘Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites scaffold was investigated and analyzed. The results show that the effects of porous structure on the bending strength, modulus and curves of stress and strain were obvious. Compared with nonporous sample, the curves of stress and strain of porous sample show more rough, and alternative phenomenon of stress increase and stress relaxation appears. It is strongly suggested that the fracture model of C/PLA/nano-HA composites scaffold transforms from the local to global load due to the porous structure.
文摘The composite of Dy-α-sialon/10 wt pct nano-size SiC particles has been prepared from precursor powders of Si3N4, AIN, Al2O3, Dy2O3 and nano-size β-SiC. The hardness, toughness and bending strength of the composite at ambient temperature are a little higher than those of Dy-α-sialon.while the bending strength is maintained up to 1000℃ and about 2 times more than that of Dy-α-sialon at the same temperature. The fracture surfaces show that the grain size of the composite is smaller than that of Dy-α-sialon, and both Of them have predominately transgranular mode of fracture. It is believed that the decrease of the bending strength of Dy-α-sialon at elevated temperature is caused by the viscous flow of the grain boundary phase, while the addition of nanosize SiC particles effectively increases the viscosity of the grain boundary phase and therefore prevents the strength loss of Dy-α-sialon/nano-size SiC composites at elevated temperature
基金National Natural Science Foundation of China(Grant No.51435003)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20160670)
文摘Many DNA?based devices need to build stable and controllable DNA films on surfaces. However, the most com?monly used method of film characterization, namely, the probe?like microscopes which may destroy the sample and substrate. Surface Forces Apparatus(SFA) technique, specializing in surface interaction studies, is introduced to investigate the e ects of DNA concentration on the formation of single?stranded DNA(ss?DNA) film. The result demonstrates that 50 ng/μL is the lowest concentration that ss?DNA construct a dense layer on mica. Besides, it is also indicated that at di erent DNA concentrations, ss?DNA exhibit diverse morphology: lying flat on surface at 50 ng/μL while forming bilayer or cross?link at 100 ng/μL, and these ss?DNA structures are stable enough due to the repeatabil?ity even under the load of 15 mN/m. At the same time, an obvious adhesion force is measured:/m at 100 ng/μL, respectively, which is attributed to the ion?correlation e ect. M-6.5 mN/m at 50 ng/μL and-5.3 mNoreover, the atomic force microscopy(AFM) images reveal the entire surface is covered with wormlike ss?DNA and the measured surface roughness(1.8±0.2 nm) also matches well with the film thickness by SFA. The desorption behaviors of ss?DNA layer from mica surface occur by adding sodium salt into gap bu er, which is mainly ascribed to the decreased ion?ion cor?relation force. This paper employing SFA and AFM techniques to characterize the DNA film with flexibility and stable mechanical ability achieved by ion bridging method, is helpful to fabricate the DNA?based devices in nanoscale.
文摘Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and TEM; and the micro mechanical properties were tested by nano-indentation technique. The results show that 56% of particles in the solution are dispersed in size of less than 100nm, the content of nanoparticles co-deposited in the coating doubles and structure of the coating is more compact and uniform than that of Ni coating. Nano-SiO2/Ni coating exhibits excellent micro mechanical properties, and the nanohardness and elastic modulus are 7.81GPa and 198GPa, respectively, which are attributed to finer crystal strengthening, dispersion strengthening and high-density dislocation strengthening of nano-SiO2 particles to the composite coatings.
文摘The idea of adding reinforcing materials, or fillers, to polymers has been around for many decades. The reason for the creation of polymer composite materials came about due of the need for materials with specific properties for specific applications. For example, composite materials are unique in their ability to allow brittle and ductile materials to become softer and stronger. It is expected that good tribological properties can be obtained for polymers filled with nano-scale fillers. A soft plastic can become harder and stronger by the addition of a light weight high stiffness material. In the present work, the effect of adding different percentages of carbon nano-particulates to polystyrene (PS) on the mechanical properties of nano-composites produced was investigated. Based on the experimental observations, it was found that as the percentage of the carbon nano-particulates (CNPS) increased hardness increased and consequently friction coefficient remarkably decreased.
文摘The current study focused on the utilization of local clay for synthesis and characterization of meta-kaolin based geopolymers with and without nano-silica. The control geopolymers, for a compressive strength of 30 MPa, were optimized by using Liquid/Solid ratio of 0.55, NaOH concentration of 10 M and curing at 80<span style="white-space:nowrap;">°</span>C. The nano silica was added in an extended range of 1%, 2%, 3%, 5%, 7% and 10%. The synthesized nano-silica metakaolin based geopolymers w<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> investigated by using compressive strength, XRD, XRF, FTIR, SEM, MIP, TG, UV/VIS spectroscopy, in addition to density, water absorption and initial setting times. The results indicated an increase in the compressive strength value with the incorporation of nano-silica in geopolymer mixes until the optimum percentage of 5%, while the 10% addition of nano-silica decreased the compressive strength by 5% as compared to the control geopolymer. The increase in the compressive strength was accredited to the increase in the content of N-A-S-H gel and the amorphous structure as shown by XRD and FTIR analysis. In addition, the optical transmittance analysis, MIP and SEM scans along with the results of density and water absorption have clearly shown the densification of the matrix formed for the optimal percentage of nano-silica. However, the initial setting time was found to reduce substantially with increase of nano-silica content. Moreover, the TG results have shown the 5% nano-added geopolymers to have greater thermal stability as compared to reference geopolymer</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. Finally, the adopted methodology in this research has shown that 5% nano-silica, is the optimal result for the synthesis and the production of local meta kaolin based geopolymer, with regard to the improvement of physical properties, micro structure and compressive strength.</span></span></span>
文摘TiC based steel bonded carbides with the addition of nano TiN were prepared by vacuum sintering techniques.The microstructure was investigated using scanning electron microscopy(SEM) and transmission electron microscopy(TEM),and the mechanical properties,such as bending strength,impact toughness,hardness,and density,were measured.The results indicate that the grain size becomes small and there is uniformity in the steel bonded carbide with nano addition;several smaller carbide particles are also found to be inlaid in the rim of the larger carbide grains and prevent the coalescence of TiC grains.The smaller and larger carbide grains joint firmly,and then the reduction of the average size of the grains leads to the increase in the mechanical properties of the steel bonded carbides with nano addition.But the mechanical properties do not increase monotonously with an increase in nano addition.When the nano TiN addition accounts for 6-8 wt.% of the amount of steel bonded carbides,the mechanical properties reach the maximum values and then decrease with further increase in nano TiN addition.
基金supported by the National Natural Science Foundation of China (50871035)the Ph.D. Programs Foundation of Ministry of Education of China (20060213017)
文摘The aim of this investigation is to reveal the influence of rare earths(RE) addition on mechanical properties of plasma nitrocarburized 17-4PH steel.The nitrocarburized layers were characterized by optical microscope,scanning electron microscope equipped with energy dispersive X-ray analyzer,X-ray diffractometer,microhardness tester and pin-on-disc tribometer.The results showed that RE atoms could diffuse into the surface layer of 17-4PH steel plasma nitrocarburized at 500 °C for 4 h and did not change the ...
基金supported by the National Natural Science Foundation of China(51405216,51165032)Jiangxi Province Education Commission Foundation(GJJ14200)
文摘The influence of Sm (Samarium) content on microstructure and mechanical properties of recycled die-cast YLl12 aluminum alloys was investigated. The results show that many small Sm-rich particles form in the recycled die-cast YLl12 alloys with Sm addition. At the same time, the secondary dendrite arm spacing in the YLl12 alloys modified with Sm is smaller than that of the unmodified alloy. The eutectic Si of recycled die- cast YL112-xSm alloys transforms from coarse acicular morphology to fine fibres. Mechanical properties of the investigated recycled die-cast YLl12 aluminum alloys are enhanced with Sm addition, and a maximal ultimate tensile strength value (276 MPa) and elongation (3.76%) are achieved at a Sm content of 0.6wt.%. Due to the modification of eutectic Si by Sm, numerous tearing ridges and tiny dimples on the fractures of tensile samples are observed.
基金sponsored by the National Natural Science Foundation of China(Grant No.51504165)the Project funded by the China Postdoctoral Science Foundation(Grant No.2016M601271)Tianjin Scince&Technology Project(Grant No.16JCQNJC02600)
文摘Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtained. The ultrasonic vibration introduced into soldering could influence the migration of Si particles and the microstructure of solidified Zn - Al based alloys. Both the distribution of Si particles and microstructure of the solidified Zn - Al based alloys affected the shear strength of joints. The shear strength increased with the ultrasonic vibration time. The highest average shear strength of joints reached to -68.5 MPa. Transcrystalline rupture mode was observed on the fracture surface.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564002 and 11664005)the Guizhou Normal University Innovation and Entrepreneurship Education Research Center Foundation(Grant No.0418010)the Joint Foundation of Guizhou Normal University(Grant No.7341)
文摘Using first-principle calculations, we investigate the mechanical, structural, and electronic properties and formation energy of 25 kinds of Ⅲ–V binary monolayers in detail. A relative radius of the binary compound according to the atomic number in the periodic table is defined, and based on the definition, the 25 kinds of Ⅲ–V binary compounds are exactly located at a symmetric position in a symmetric matrix. The mechanical properties and band gaps are found to be very dependent on relative radius, while the effective mass of holes and electrons are found to be less dependent. A linear function between Young’s modulus and formation energy is fitted with a linear relation in this paper. The change regularity of physical properties of B–V(V = P, As, Sb, Bi) and Ⅲ–N(Ⅲ = Al, Ga, In, Tl) are found to be very different from those of other Ⅲ–V binary compounds.
基金Financial assistance from Defence Research and Development Organisation
文摘Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.