期刊文献+
共找到9,503篇文章
< 1 2 250 >
每页显示 20 50 100
Recent development of LiNi_xCo_yMn_zO_2:Impact of micro/nano structures for imparting improvements in lithium batteries 被引量:8
1
作者 潘成迟 Craig E.BANKS +3 位作者 宋维鑫 王驰伟 陈启元 纪效波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期108-119,共12页
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia... The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing. 展开更多
关键词 lithium-ion battery micro/nano structures LiNixCoyMnzO2 DOPING surface coating composite materials
下载PDF
Generating micro/nanostructures on magnesium alloy surface using ultraprecision diamond surface texturing process 被引量:1
2
作者 Hanheng Du Mengnan Jiang +2 位作者 Zuankai Wang Zhiwei Zhu Suet To 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1472-1483,共12页
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm... The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics. 展开更多
关键词 Magnesium alloy micro/nanostructurE Ultraprecision diamond surface texturing Cutting force Chip morphology structural color
下载PDF
Microstructures and properties of Si_3N_4/TiN ceramic nano-multilayer films
3
作者 许俊华 顾明元 +1 位作者 李戈扬 金燕平 《中国有色金属学会会刊:英文版》 CSCD 1999年第4期764-767,共4页
The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation p... The polycrystalline Si3N4/TiN ceramic nano-multilayer films have been synthesized on Si substrates by a reactive magnetron Sputtering technique, aiming at investigating the effects of modulation ratio and modulation period on the microhardness and to elucidate the hardening mechanisms of the synthesized nanomultilayer films. The results showed that the hardness of Si3N4/TiN nano-multilayers is affected not only by modulation period, but also by modulation ratio. The hardness reaches its maximum value when modulation period equa1s a critical value λ0, which is about 12 nm with a modulation ratio of 3: 1. The maximum hardness value is about 40% higher than the value calculated from the rule of mixtures. The hardness of nano-multilayer thin films was found to decrease rapidly with increasing or decreasing modulation period from the Point of λ0. The microstructures of the nano-multilayer films have been investigated using XRD and TEM. Based on experimental results, the mechanism of the superhardness in this system was proposed. 展开更多
关键词 Si3N4/TiN multilayer films micro HARDNESS micro structures
下载PDF
Potential application of functional micro-nano structures in petroleum
4
作者 LIU He JIN Xu +2 位作者 ZHOU Dekai YANG Qinghai LI Longqiu 《Petroleum Exploration and Development》 2018年第4期745-753,共9页
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d... This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining. 展开更多
关键词 PETROLEUM industry micro-nano structures micro-nano motor METAMATERIALS 3D PRINTING application direction OIL production engineering OIL equipment enhanced OIL recovery
下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
5
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
6
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry structurE SIZE micro/nano-energetic materials construction technology PROPERTY
下载PDF
Synthesis of hierarchical dendritic micro–nano structure ZnFe_2O_4 and photocatalytic activities for water splitting 被引量:5
7
作者 Zhongping Yao Yajun Zhang +2 位作者 Yaqiong He Qixing Xia Zhaohua Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1112-1116,共5页
Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electr... Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn^(2+)/Fe^(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn^(2+)/Fe^(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn^(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn^(2+)/Fe^(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L^(-1)Na_2S/0.02 mol·L^(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g^(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3). 展开更多
关键词 ZNFE2O4 ELECTROCHEMICAL reduction and thermal OXIDATION DENDRITIC micronano structure Hydrogen production
下载PDF
REHEATING TEMPERATURE CONTRAST AND MICROSTRUCTURES OF 7075 Al ALLOY CAST BY LIQUIDUS SEMI-CONTINUOUS CASTING 被引量:9
8
作者 J. Dong, G.M. Lu and J.Z. CuiThe Key Lab. of Electromagnetic Processing of Material, Ministry of Education, Northeastern University, Shenvane 110004, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第6期551-555,共5页
In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investig... In this study, reheating of liquidus semi-continuous cast billets of 7075 Al alloy was carried out in a resistance furnace, and the temperature contrast of the outer and the center of the reheated billets was investigated, then the reheating microstructures were investigated. Results show that: the difference of temperature between the outer and center is small and the difference of their microstructures are also small. During reheating at 576℃ the spheroidization of grains is significant after 5min and no rosettes are visible after 20min by optical microscopy. Similar observations were madeon materials reheated at 596℃, but the ripening process is faster. The grains growup to 30-60μm, fine enough for thixoforming. 展开更多
关键词 REHEATING 7075 Al alloy liquidus casting micro structure
下载PDF
Preparation of micro/nano-structured ceramic coatings on Ti6Al4V alloy by plasma electrolytic oxidation process 被引量:9
9
作者 Da-jun ZHAI Ke-qin FENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第12期2546-2555,共10页
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce... In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF. 展开更多
关键词 plasma electrolytic oxidation Ti6Al4V alloy micro/nano structure NAF surface modification
下载PDF
Micro Electrical Discharge Machining Deposition in Air for Fabrication of Micro Spiral Structures 被引量:4
10
作者 PENG Zilong CHI Guanxin WANG Zhenlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期154-160,共7页
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m... Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures. 展开更多
关键词 micro electrical discharge machining deposition micro spiral structure forming mechanism fine texture analysis
下载PDF
Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process 被引量:4
11
作者 Hamid Reza TALESH BAHRAMI Alireza AZIZI Hamid SAFFARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1065-1076,共12页
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe... Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time. 展开更多
关键词 dropwise condensation heat transfer ELECTRODEPOSITION micro/nano structure POROSITY
下载PDF
Effect of Nano Silica on Hydration and Microstructure Characteristics of Cement High Volume Fly Ash System Under Steam Curing 被引量:4
12
作者 MA Baoguo MEI Junpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第3期604-613,共10页
The influences of nano silica (NS) on the hydration and microstructure development of steam cured cement high volume fly ash (40 wt%, CHVFA) system were investigated. The compressive strength of mortars was tested wit... The influences of nano silica (NS) on the hydration and microstructure development of steam cured cement high volume fly ash (40 wt%, CHVFA) system were investigated. The compressive strength of mortars was tested with different NS dosage from 0 to 4%. Results show that the compressive strength is dramatically improved with the increase of NS content up to 3%, and decreases with further increase of NS content (e g, at 4%). Then X?ray diffraction (XRD), differential scanning calorimetry-thermogravimetry (DSCTG), scanning electron microscope (SEM), energy disperse spectroscopy (EDS), mercury intrusion porosimeter (MIP) and nuclear magnetic resonance (NMR) were used to analyze the mechanism. The results reveal that the addition of NS accelerates the hydration of cement and fly ash, decreases the porosity and the content of calcium hydroxide (CH) and increases the polymerization degree of C-S-H thus enhancing the compressive strength of mortars. The interfacial transition zone (ITZ) of CHVFA mortars is also significantly improved by the addition ofNS, embodying in the decrease of Ca/Si ratio and CH enrichment of ITZ. 展开更多
关键词 nano SILICA CEMENT high volume FLY ash HYDRATION pozzolanic reaction pore structure interfacial transition zone
下载PDF
Progress in molecular-simulation-based research on the effects of interface-induced fluid microstructures on flow resistance 被引量:2
13
作者 Yumeng Zhang Yudan Zhu +4 位作者 AnranWang Qingwei Gao Yao Qin Yaojia Chen Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第6期1403-1415,共13页
In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fund... In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems. 展开更多
关键词 Process INTENSIFICATION nanoconfined FLUID Interface Complex fluids micro structure MOLECULAR SIMULATION
下载PDF
Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation 被引量:6
14
作者 Yingjie Zhao Xing Yin +4 位作者 Pengwei Li Ziqiu Ren Zhenkun Gu Yiqiang Zhang Yanlin Song 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期565-594,共30页
Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implement... Multifunctional photodetectors boost the development of traditional optical communication technology and emerging artificial intelligence fields, such as robotics and autonomous driving. However, the current implementation of multifunctional detectors is based on the physical combination of optical lenses, gratings, and multiple photodetectors, the large size and its complex structure hinder the miniaturization, lightweight, and integration of devices. In contrast, perovskite materials have achieved remarkable progress in the field of multifunctional photodetectors due to their diverse crystal structures, simple morphology manipulation, and excellent optoelectronic properties. In this review, we first overview the crystal structures and morphology manipulation techniques of perovskite materials and then summarize the working mechanism and performance parameters of multifunctional photodetectors. Furthermore, the fabrication strategies of multifunctional perovskite photodetectors and their advancements are highlighted, including polarized light detection, spectral detection, angle-sensing detection, and selfpowered detection. Finally, the existing problems of multifunctional detectors and the perspectives of their future development are presented. 展开更多
关键词 Perovskite materials Crystal structure design micro/nano-structure manipulation Working mechanism Multifunctional photodetectors
下载PDF
On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics
15
作者 Qun Jin Tianxiao Guo +4 位作者 Nicolas Perez Nianjun Yang Xin Jiang Kornelius Nielsch Heiko Reith 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期98-108,共11页
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ... Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics. 展开更多
关键词 Temperature control Low-power electronics On-chip micro temperature controller Freestanding thermoelectric nano films Temperature-sensitive components
下载PDF
Active Micro-Nano-Collaborative Bioelectronic Device for Advanced Electrophysiological Recording
16
作者 Yuting Xiang Keda Shi +7 位作者 Ying Li Jiajin Xue Zhicheng Tong Huiming Li Zhongjun Li Chong Teng Jiaru Fang Ning Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期244-264,共21页
The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic d... The development of precise and sensitive electrophysiological recording platforms holds the utmost importance for research in the fields of cardiology and neuroscience.In recent years,active micro/nano-bioelectronic devices have undergone significant advancements,thereby facilitating the study of electrophysiology.The distinctive configuration and exceptional functionality of these active micro-nano-collaborative bioelectronic devices offer the potential for the recording of high-fidelity action potential signals on a large scale.In this paper,we review three-dimensional active nano-transistors and planar active micro-transistors in terms of their applications in electroexcitable cells,focusing on the evaluation of the effects of active micro/nano-bioelectronic devices on electrophysiological signals.Looking forward to the possibilities,challenges,and wide prospects of active micro-nano-devices,we expect to advance their progress to satisfy the demands of theoretical investigations and medical implementations within the domains of cardiology and neuroscience research. 展开更多
关键词 Active micro/nano collaborative bioelectronic device Three-dimensional active nano-transistor Planar active microtransistor ELECTROPHYSIOLOGY
下载PDF
Ignition processes and characteristics of charring conductive polymers with a cavity geometry in precombustion chamber for applications in micro/nano satellite hybrid rocket motors
17
作者 Zhiyuan Zhang Hanyu Deng +2 位作者 Wenhe Liao Bin Yu Zai Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期55-66,共12页
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of... The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually. 展开更多
关键词 micro/nano satellite hybrid propulsion Arc ignition Charring conductive polymer Ignition mechanism Ignition characteristic Repeated ignition
下载PDF
Osteoblast Behavior on Hierarchical Micro-/Nano-Structured Titanium Surface 被引量:7
18
作者 Weiyan Meng Yanmin Zhou Yanjing Zhang Qing Cai Liming Yang Jinghui Zhao Chunyan Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第3期234-241,共8页
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrol... In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings. 展开更多
关键词 dental implant OSTEOBLAST hierarchical micro-/nano-structure surface treatment electrolytic etching
下载PDF
Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters 被引量:6
19
作者 Zhaoxin Lao Rui Sun +6 位作者 Dongdong Jin Zhongguo Ren Chen Xin Yachao Zhang Shaojun Jiang Yiyuan Zhang Li Zhang 《International Journal of Extreme Manufacturing》 EI 2021年第2期89-97,共9页
Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus str... Several natural organism can change shape under external stimuli. These natural phenomena have inspired a vast amount of research on exploration and implementation of reconfigurable shape transformation. The Janus structure is a promising approach to achieve shape transformation based on its heterogeneous chemical or physical properties on opposite sides.However, the heterogeneity is generally realized by multi-step processing, different materials,and/or different processing parameters. Here, we present a simple and flexible method of producing p H-sensitive Janus microactuators from a single material, using the same laser printing parameters. These microactuators exhibit reversible structural deformations with large bending angles of ~31°and fast response(~0.2 s) by changing the p H value of the aqueous environment. Benefited from the high flexibility of the laser printing technique and the spatial arrangements, pillar heights, and bending directions of microactuators are readily controlled,enabling a variety of switchable ordered patterns and complex petal-like structures on flat surfaces and inside microchannels. Finally, we explore the potential applications of this method in information encryption/decryption and microtarget capturing. 展开更多
关键词 micro actuator smart material pH hydrogel Janus structure laser printing
下载PDF
Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring 被引量:12
20
作者 Dongshi Zhang Bikas Ranjan +1 位作者 Takuo Tanaka Koji Sugioka 《International Journal of Extreme Manufacturing》 2020年第1期135-154,共20页
In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through la... In this study,we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids(UPB-fs-LAL)that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates.Long-tailed macrostructures are composed of layered fan-shaped(central angles of 45°–141°)hierarchical micro/nanostructures,which are produced by fan-shaped beams refracted at the mobile bubble interface(.50°light tilt,referred to as the vertical incident direction)during UPB-fs-LAL line-by-line scanning.Marangoni flow generated during UPB-fs-LAL induces bubble movements.Fast scanning(e.g.1mms−1)allows a long bubble movement(as long as 2mm),while slow scanning(e.g.0.1mms−1)prevents bubble movements.When persistent bubbles grow considerably(e.g.hundreds of microns in diameter)due to incubation effects,they become sticky and can cause both gas-phase and liquidphase laser ablation in the central and peripheral regions of the persistent bubbles.This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures(LSFLs/HSFLs/UHSFLs)with periods of 550–900,100–200,40–100 nm,which produce complex hierarchical surface structures.A period of 40 nm,less than 1/25th of the laser wavelength(1030 nm),is the finest laser-induced periodic surface structures(LIPSS)ever created on silicon.The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval(5μm versus 10μm)is extremely low,due to both their extremely high light trapping capacity and absorbance characteristics,which are results of the structures’additional layers and much finer HSFLs.In the absence of persistent bubbles,only grooves covered with HSFLs with periods larger than 100 nm are produced,illustrating the unique attenuation abilities of laser properties(e.g.repetition rate,energy,incident angle,etc)by persistent bubbles with different curvatures.This research represents a straightforward and cost-effective approach to diversifying the achievable hierarchical micro/nanostructures for a multitude of applications. 展开更多
关键词 hierarchical micro/nanostructures persistent bubble femtosecond laser surface structuring beam refraction fan-shaped microstructure LIPSS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部