Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmis...Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.展开更多
Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granu...Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.展开更多
Fine face-centered cubic (FCC) nickel powders were synthesized by liquid phase reduction with different surfactants. The products were investigated by scanning electron microscopy (SEM), laser particle size analyzer a...Fine face-centered cubic (FCC) nickel powders were synthesized by liquid phase reduction with different surfactants. The products were investigated by scanning electron microscopy (SEM), laser particle size analyzer and X-ray powder diffraction (XRD). The results indicate that the type, dosage and relative molecular mass of surfactants significantly impact the purity, dispersion property, particle size, size distribution and morphology of the products. The nonionic surfactants poly ethylene glycol (PEG) and polyethylene glycol sorbitan monostearate (Tween) showed better dispersing ability in the reaction system than the others. The optimal mass ratios of surfactant to Ni are 100 mg/g and 150 mg/g for PEG-600 and Tween-40, respectively. The products obtained in the optimal conditions have ideal morphology and narrow size distribution. Moreover, study on the relative molecular mass effect revealed that with the increase of the relative molecular mass of Tween, the morphology of nickel powders changed from sphere to spiny ball.展开更多
Background There is an urgent need to identify natural bioactive compounds that can enhance gastrointestinal health and promote pig growth performance in the absence of pharmacological levels of zinc oxide(ZnO).The ob...Background There is an urgent need to identify natural bioactive compounds that can enhance gastrointestinal health and promote pig growth performance in the absence of pharmacological levels of zinc oxide(ZnO).The objectives of this study were to:1)compare the effects of mushroom powder supplemented with inorganic selenium(inSeMP)to mushroom powder enriched with organic selenium(orgSeMP)to pharmacological levels of ZnO on growth performance and faecal scores(FS)for the first 21 d post-weaning(Period 1);and 2)compare the molecular and microbial effects of inSeMP and orgSeMP in these pigs on d 39 post-weaning(Period 2).Methods In Period 1,pigs(3 pigs/pen;8 pens/treatment)were assigned to:(1)basal diet(control);(2)basal diet+zinc oxide(ZnO)(3100 mg/kg d 1–14,1550 mg/kg d 15–21);(3)basal diet+mushroom powder supplemented with inorganic selenium(inSeMP)containing selenium(selenite)content of 0.3 mg/kg feed;(4)basal diet+mushroom powder enriched with organic selenium(orgSeMP)containing selenium(selenocysteine)content of 0.3 mg/kg feed.Mushroom powders were included at 6.5 g/kg of feed.Results In Period 1,there was no effect of diets on average daily gain(ADG)and gain:feed(G:F)ratio(P>0.05).The orgSeMP supplemented pigs had a lower average daily feed intake(ADFI)compared to all other groups(P<0.05).The ZnO supplemented pigs had reduced FS compared to the basal and mushroom group,while the orgSeMP supplemented pigs had lower FS compared to the basal group during the 21 d experimental period(P<0.05).In Period 2,there was no effect of diets on ADFI,ADG and G:F ratio(P>0.05).The orgSeMP supplementation increased the caecal abundance of bacterial members of the Firmicutes and Bacteroidetes phylum,including Lactobacillus,Agathobacter,Roseburia,and Prevotella and decreased the abundance of Sporobacter compared to the basal group,while inSeMP increased the caecal abundance of Prevotella and decreased the caecal abundance of Sporobacter compared to the basal group(P<0.05).Dietary supplementation with inSeMP increased expression of TLR4 and anti-inflammatory cytokine gene IL10 and decreased nutrient transporter gene FABP2 compared to the orgSeMP group(P<0.05).Conclusion OrgSeMP is a novel and sustainable way to incorporate selenium andβ-glucans into the diet of weaned pigs whilst improving FS and modulating the caecal microbiota.展开更多
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ...The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.展开更多
This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and redu...This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and reduce the agglomeration of powders. Also, the reflex spectra of nano-scale powders with different grain size were studied. It tvas found that the wave length and width of reflex spectra are connected with the grain size of nano-TiO2 powders展开更多
Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show tha...Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show that chemical composition of the master alloy is the key factor which controls the chemical composition of the compound phases in nanometer powders at given evaporating temperature, the compound phases with high Fe mole fraction will form with increasing of Fe content in master alloy. Only Al 13 Fe 4, FeAl 2 and Al 2Fe compound phases form in nanometer powders in present experiment, changing of the pressure of Ar can only alter relative amounts of the compound phases in the powders. Nanometer particles with inhomogeneous tissue were obtained, which is very different from that of pure Al and Fe nanometer particles. When mole fraction of Fe in particles increases, the inhomogeneity is enhanced. [展开更多
An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was exami...An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was examined by Xray diffraction. The morphology and microstructure of the milled powders were monitored by scanning electron microscopy and transmission electron microscopy. It was found that the formation of this composite was completed after 15 and 30 h of milling time in systems (1) and (2), respectively. More milling energy was required for the formation of this composite in system (2) due to the lubricant properties of HaBO3 and also its decomposition to HBO2 and B2O3 during milling. On the basis of X-ray diffraction patterns and thermodynamic calculations, this composite was formed by highly exothermic mechanically induced self-sustaining reactions (MSR) in both systems. The MSR mode took place around 9 h and 25 h of milling in systems (1) and (2), respectively. At the end of milling (15 h for system (1) and 30 h for system (2)) the grain size of about 35-50 nm was obtained in both systems.展开更多
Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM,...Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM, EDS, XRD and granularity analysis. Experimental results showed that scandia distributed evenly on the surface of tungsten particles. Addition of scandia and rhenium decreased the particle size of doped tungsten, and the more the content of scandia and rhenium, the smaller the doped tungsten particles. Tungsten powders doped with 3 % Sc2O3 and 3 % Re (mass fraction) had an average size of about 80 nm in diameter. The mechanism of the decrease in the tungsten particle size was discussed.展开更多
Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybuta...Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
Nanocrystalline NiCrC alloy powders with a qualified particle size distribution for thermal spraying were synthesized using the cryogenic ball milling (cryomilling) method. The morphology, microstructure, size distr...Nanocrystalline NiCrC alloy powders with a qualified particle size distribution for thermal spraying were synthesized using the cryogenic ball milling (cryomilling) method. The morphology, microstructure, size distribution, and phase transformation of the powders were characterized by scanning electron microscopy (SEM), laser scattering for particle size analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). After cryomilling for 20 h, the average grain size of the as-milled powders approached a constant value of 30 nm by XRD measurement. The average particle size slightly increased from 17.5 to 20.3 μm during the 20-h milling. About 90vol% of the powders satisfied the requirement for thermal spraying with the particle dimension of 10-50 μm, and most of the powders exhibited spherical morphology, which were expected to have good fluidity during thermal spraying. The Cr2O3 phase formed during the cryornilling process as revealed in the XRD spectra, which was expected to enhance the thermal stability of the as-milled powders during the followed thermal spraying or other heat treatment.展开更多
Multiwalled carbon nanotubes (MWNTs) were treated with the reflux within the concentrated nitric acid for 0-25 h to purify and disperse the tangled MWNTs. The effect of reflux time on the morphology and the weight los...Multiwalled carbon nanotubes (MWNTs) were treated with the reflux within the concentrated nitric acid for 0-25 h to purify and disperse the tangled MWNTs. The effect of reflux time on the morphology and the weight loss of MWNTs were investigated. Meanwhile,the dispersion of MWNTs with 0-2.0 wt.% in 2024Al powders using mechanical stirring with an assisting ultrasonic shaker in ethanol was also studied. The results show that the reflux time markedly affects the morphology of MWNTs. The weight loss of MWNTs i...展开更多
The mixture of 90W 7Ni 3Fe(mass fraction, %) powders was milled in a planetary ball mill. Its structure changed during milling, the surface characteristics and thermal stability of the milled powders were studied with...The mixture of 90W 7Ni 3Fe(mass fraction, %) powders was milled in a planetary ball mill. Its structure changed during milling, the surface characteristics and thermal stability of the milled powders were studied with X ray diffraction(XRD), Brunaure Emmett Teller (BET) nitrogen adsorption technique and differential thermal analysis(DTA). The results show that high energy ball milling leads to the formation of composite powders with amorphous binder phase and supersaturated W(Ni, Fe) nano crystalline grains in which great lattice distortion exists. The crystallization temperature of the amorphous binder phase during heating decreases with milling time. The specific surface area and the pore size of the powder mixtures decreases with milling time due to agglomeration and welding between particles.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金Project (NS2010153) supported by Nanjing University of Aeronautics and Astronautics Research Funding, ChinaProject (BE2009130) supported by Jiangsu Key Technology R&D Program, China
文摘Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.
基金Projects(51072045,51102074)supported by the National Natural Science Foundation of China
文摘Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.
基金Projects(51074096,51274130)supported by the National Natural Science Foundation of China
文摘Fine face-centered cubic (FCC) nickel powders were synthesized by liquid phase reduction with different surfactants. The products were investigated by scanning electron microscopy (SEM), laser particle size analyzer and X-ray powder diffraction (XRD). The results indicate that the type, dosage and relative molecular mass of surfactants significantly impact the purity, dispersion property, particle size, size distribution and morphology of the products. The nonionic surfactants poly ethylene glycol (PEG) and polyethylene glycol sorbitan monostearate (Tween) showed better dispersing ability in the reaction system than the others. The optimal mass ratios of surfactant to Ni are 100 mg/g and 150 mg/g for PEG-600 and Tween-40, respectively. The products obtained in the optimal conditions have ideal morphology and narrow size distribution. Moreover, study on the relative molecular mass effect revealed that with the increase of the relative molecular mass of Tween, the morphology of nickel powders changed from sphere to spiny ball.
基金funded by the Science Foundation Ireland (SFI)Monaghan Mushrooms[Grant number:16/RC/3889]。
文摘Background There is an urgent need to identify natural bioactive compounds that can enhance gastrointestinal health and promote pig growth performance in the absence of pharmacological levels of zinc oxide(ZnO).The objectives of this study were to:1)compare the effects of mushroom powder supplemented with inorganic selenium(inSeMP)to mushroom powder enriched with organic selenium(orgSeMP)to pharmacological levels of ZnO on growth performance and faecal scores(FS)for the first 21 d post-weaning(Period 1);and 2)compare the molecular and microbial effects of inSeMP and orgSeMP in these pigs on d 39 post-weaning(Period 2).Methods In Period 1,pigs(3 pigs/pen;8 pens/treatment)were assigned to:(1)basal diet(control);(2)basal diet+zinc oxide(ZnO)(3100 mg/kg d 1–14,1550 mg/kg d 15–21);(3)basal diet+mushroom powder supplemented with inorganic selenium(inSeMP)containing selenium(selenite)content of 0.3 mg/kg feed;(4)basal diet+mushroom powder enriched with organic selenium(orgSeMP)containing selenium(selenocysteine)content of 0.3 mg/kg feed.Mushroom powders were included at 6.5 g/kg of feed.Results In Period 1,there was no effect of diets on average daily gain(ADG)and gain:feed(G:F)ratio(P>0.05).The orgSeMP supplemented pigs had a lower average daily feed intake(ADFI)compared to all other groups(P<0.05).The ZnO supplemented pigs had reduced FS compared to the basal and mushroom group,while the orgSeMP supplemented pigs had lower FS compared to the basal group during the 21 d experimental period(P<0.05).In Period 2,there was no effect of diets on ADFI,ADG and G:F ratio(P>0.05).The orgSeMP supplementation increased the caecal abundance of bacterial members of the Firmicutes and Bacteroidetes phylum,including Lactobacillus,Agathobacter,Roseburia,and Prevotella and decreased the abundance of Sporobacter compared to the basal group,while inSeMP increased the caecal abundance of Prevotella and decreased the caecal abundance of Sporobacter compared to the basal group(P<0.05).Dietary supplementation with inSeMP increased expression of TLR4 and anti-inflammatory cytokine gene IL10 and decreased nutrient transporter gene FABP2 compared to the orgSeMP group(P<0.05).Conclusion OrgSeMP is a novel and sustainable way to incorporate selenium andβ-glucans into the diet of weaned pigs whilst improving FS and modulating the caecal microbiota.
文摘The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.
文摘This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and reduce the agglomeration of powders. Also, the reflex spectra of nano-scale powders with different grain size were studied. It tvas found that the wave length and width of reflex spectra are connected with the grain size of nano-TiO2 powders
文摘Nanometer powders of Al Fe alloy were prepared by gas evaporation. The formation regularity of the phases in the as prepared powders and the morphology of the particles were examined. The experimental results show that chemical composition of the master alloy is the key factor which controls the chemical composition of the compound phases in nanometer powders at given evaporating temperature, the compound phases with high Fe mole fraction will form with increasing of Fe content in master alloy. Only Al 13 Fe 4, FeAl 2 and Al 2Fe compound phases form in nanometer powders in present experiment, changing of the pressure of Ar can only alter relative amounts of the compound phases in the powders. Nanometer particles with inhomogeneous tissue were obtained, which is very different from that of pure Al and Fe nanometer particles. When mole fraction of Fe in particles increases, the inhomogeneity is enhanced. [
文摘An Al2O3-TiB2 nanocomposite was successfully synthesized by ball milling of Al, TiO2 and two B source materials of B2O3 (system (1)) and H3BO3 (system (2)). Phase identification of the milled samples was examined by Xray diffraction. The morphology and microstructure of the milled powders were monitored by scanning electron microscopy and transmission electron microscopy. It was found that the formation of this composite was completed after 15 and 30 h of milling time in systems (1) and (2), respectively. More milling energy was required for the formation of this composite in system (2) due to the lubricant properties of HaBO3 and also its decomposition to HBO2 and B2O3 during milling. On the basis of X-ray diffraction patterns and thermodynamic calculations, this composite was formed by highly exothermic mechanically induced self-sustaining reactions (MSR) in both systems. The MSR mode took place around 9 h and 25 h of milling in systems (1) and (2), respectively. At the end of milling (15 h for system (1) and 30 h for system (2)) the grain size of about 35-50 nm was obtained in both systems.
基金Project supported by the National Natural Science Foundation of China (50571001)the National "863"Project(2006AA03Z524)
文摘Scandia and rhenium doped tungsten powders were prepared by solid-liquid doping combined with two-step reduction method. The particle size of doped tungsten and distribution of scandia and rhenium were studied by SEM, EDS, XRD and granularity analysis. Experimental results showed that scandia distributed evenly on the surface of tungsten particles. Addition of scandia and rhenium decreased the particle size of doped tungsten, and the more the content of scandia and rhenium, the smaller the doped tungsten particles. Tungsten powders doped with 3 % Sc2O3 and 3 % Re (mass fraction) had an average size of about 80 nm in diameter. The mechanism of the decrease in the tungsten particle size was discussed.
文摘Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金supported by the National High-Tech Research and Development Program of China (No.2002AA331080)
文摘Nanocrystalline NiCrC alloy powders with a qualified particle size distribution for thermal spraying were synthesized using the cryogenic ball milling (cryomilling) method. The morphology, microstructure, size distribution, and phase transformation of the powders were characterized by scanning electron microscopy (SEM), laser scattering for particle size analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). After cryomilling for 20 h, the average grain size of the as-milled powders approached a constant value of 30 nm by XRD measurement. The average particle size slightly increased from 17.5 to 20.3 μm during the 20-h milling. About 90vol% of the powders satisfied the requirement for thermal spraying with the particle dimension of 10-50 μm, and most of the powders exhibited spherical morphology, which were expected to have good fluidity during thermal spraying. The Cr2O3 phase formed during the cryornilling process as revealed in the XRD spectra, which was expected to enhance the thermal stability of the as-milled powders during the followed thermal spraying or other heat treatment.
文摘Multiwalled carbon nanotubes (MWNTs) were treated with the reflux within the concentrated nitric acid for 0-25 h to purify and disperse the tangled MWNTs. The effect of reflux time on the morphology and the weight loss of MWNTs were investigated. Meanwhile,the dispersion of MWNTs with 0-2.0 wt.% in 2024Al powders using mechanical stirring with an assisting ultrasonic shaker in ethanol was also studied. The results show that the reflux time markedly affects the morphology of MWNTs. The weight loss of MWNTs i...
文摘The mixture of 90W 7Ni 3Fe(mass fraction, %) powders was milled in a planetary ball mill. Its structure changed during milling, the surface characteristics and thermal stability of the milled powders were studied with X ray diffraction(XRD), Brunaure Emmett Teller (BET) nitrogen adsorption technique and differential thermal analysis(DTA). The results show that high energy ball milling leads to the formation of composite powders with amorphous binder phase and supersaturated W(Ni, Fe) nano crystalline grains in which great lattice distortion exists. The crystallization temperature of the amorphous binder phase during heating decreases with milling time. The specific surface area and the pore size of the powder mixtures decreases with milling time due to agglomeration and welding between particles.