Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle, and high yield potential. However, no attentio...Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle, and high yield potential. However, no attention has been given to its root growth dynamic responses to rising atmospheric CO2 concentration ([CO2]) in conjunction with nitrogen (N) availability. Free air COz enrichment (FACE) and N have significant effects on rice root growth. In this experiment, a hybrid cultivar Shanyou 63 (Oryza sativa L.) was used to study the effects of FACE and N levels on roots growth of rice. The results showed a significant increase in both adventitious root volume (ARV) and adventitious root dry weight (ARD) under the FACE treatment. The application of nitrogen also increased ARV and ARD, but the increase was smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root volume and dry weight were built with the time as the driving factor. The models illustrated the dynamic development of rice adventitious root volume and dry weight after transplanting, regulated either by the influence factor of atmospheric [CO2] or by N application. The models were successfully used to predict ARV and ARD under FACE treatment in a different year with the predicted data being closely related to the actual experimental data. The model had guiding significance to growth regulation of rice root under the condition of atmospheric [CO2] rising in the future.展开更多
Polypropylene (PP)/titanium dioxide (TiO2) nano-composites were prepared by melt compounding with a twin screw extruder. Nanoparticles were modified prior to melt mixing with maleic anhydride grafted styreneethyle...Polypropylene (PP)/titanium dioxide (TiO2) nano-composites were prepared by melt compounding with a twin screw extruder. Nanoparticles were modified prior to melt mixing with maleic anhydride grafted styreneethylene-butylene-styrene (SEBS-g-MA) and silane. The composites were injection molded and mechanical tests were applied to obtain tensile strength, elastic modulus and impact strength. Antibacterial efficiency test was applied on the injection molded composite plaques by viable cell counting technique. The results showed that the composites including SEBS-g-MA and silane coated TiO2 gave better mechanical properties than the composites without SEBS-g-MA. Antibacterial efficiency of the composites varied according to the dispersion and the concentration of the particles and it was observed that composites at low content of TiO2 showed higher antibacterial property due to the better photocatalytic activity of the particles during UV exposure.展开更多
基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Key Direction Research of Knowledge Innovation in Chinese Academy of Science (KZCX3-SW-440)
文摘Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle, and high yield potential. However, no attention has been given to its root growth dynamic responses to rising atmospheric CO2 concentration ([CO2]) in conjunction with nitrogen (N) availability. Free air COz enrichment (FACE) and N have significant effects on rice root growth. In this experiment, a hybrid cultivar Shanyou 63 (Oryza sativa L.) was used to study the effects of FACE and N levels on roots growth of rice. The results showed a significant increase in both adventitious root volume (ARV) and adventitious root dry weight (ARD) under the FACE treatment. The application of nitrogen also increased ARV and ARD, but the increase was smaller than that under FACE treatment. On the basis of the FACE experiment, numerical models for rice adventitious root volume and dry weight were built with the time as the driving factor. The models illustrated the dynamic development of rice adventitious root volume and dry weight after transplanting, regulated either by the influence factor of atmospheric [CO2] or by N application. The models were successfully used to predict ARV and ARD under FACE treatment in a different year with the predicted data being closely related to the actual experimental data. The model had guiding significance to growth regulation of rice root under the condition of atmospheric [CO2] rising in the future.
基金supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 108M561)
文摘Polypropylene (PP)/titanium dioxide (TiO2) nano-composites were prepared by melt compounding with a twin screw extruder. Nanoparticles were modified prior to melt mixing with maleic anhydride grafted styreneethylene-butylene-styrene (SEBS-g-MA) and silane. The composites were injection molded and mechanical tests were applied to obtain tensile strength, elastic modulus and impact strength. Antibacterial efficiency test was applied on the injection molded composite plaques by viable cell counting technique. The results showed that the composites including SEBS-g-MA and silane coated TiO2 gave better mechanical properties than the composites without SEBS-g-MA. Antibacterial efficiency of the composites varied according to the dispersion and the concentration of the particles and it was observed that composites at low content of TiO2 showed higher antibacterial property due to the better photocatalytic activity of the particles during UV exposure.