A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness an...A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness and cavitation erosion resistance of the multi-dimensional coating were investigated in comparison with the bimodal and nanostructured WC?10Co4Cr coatings.Moreover,the cavitation erosion behavior and mechanism of the multi-dimensional coating were explored.Results show that HVOF sprayed multi-dimensional WC-10Co4Cr coating possesses low porosity(≤0.32%)and high fracture toughness without obvious nano WC decarburization during spraying.Furthermore,it is discovered that the multi-dimensional WC-10Co4Cr coating exhibits the best cavitation erosion resistance which is enhanced by approximately 28%and 34%,respectively,compared with the nanostructured and bimodal coatings in fresh water.The superior cavitation resistance of multi-dimensional WC-10Co4Cr coating may originate from the unique micro?nano structure and excellent properties,which can effectively obstruct the formation and propagation of cavitation erosion cracks.展开更多
Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of...Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of surface engineering techniques. However, the influence of coating structures on CE resistance has not been sys- tematically studied. To better understand their relationship, micro-nano and conventional WC-10Co4Cr cermet coat- ings are deposited by high velocity oxygen fuel spray- ing(HVOF), and their microstructures are analyzed by OM, SEM and XRD. Meanwhile, characterizations of mechan- ical and electrochemical properties of the coatings are carried out, as well as the coatings' resistance to CE in 3.5 wt % NaC1 solution, and the cavitation mechanisms are explored. Results show that micro-nano WC-10Co4Cr coating possesses dense microstructure, excellent mechanical and electrochemical properties, with very low porosity of 0.26 4-0.07% and extraordinary fracture toughness of 5.58 4-0.51 MPa.m1/2. Moreover, the CE resistance of micro-nano coating is enhanced above 50% than conventional coating at the steady CE period in 3.5 wt % NaC1 solution. The superior CE resistance of micro- nano WC-10Co4Cr coating may originate from the unique micro-nano structure and properties, which can effectively obstruct the formation and propagation of CE crack. Thus,a new method is proposed to enhance the CE resistance of WC-10Co4Cr coating by manipulating the microstructure.展开更多
基金Projects(51422507,51379168)supported by the National Natural Science Foundation of China
文摘A new kind of multi-dimensional WC-10Co4Cr coating which is composed of nano,submicron,micron WC grains and CoCr alloy,was developed by high velocity oxy-fuel(HVOF)spraying.Porosity,microhardness,fracture toughness and cavitation erosion resistance of the multi-dimensional coating were investigated in comparison with the bimodal and nanostructured WC?10Co4Cr coatings.Moreover,the cavitation erosion behavior and mechanism of the multi-dimensional coating were explored.Results show that HVOF sprayed multi-dimensional WC-10Co4Cr coating possesses low porosity(≤0.32%)and high fracture toughness without obvious nano WC decarburization during spraying.Furthermore,it is discovered that the multi-dimensional WC-10Co4Cr coating exhibits the best cavitation erosion resistance which is enhanced by approximately 28%and 34%,respectively,compared with the nanostructured and bimodal coatings in fresh water.The superior cavitation resistance of multi-dimensional WC-10Co4Cr coating may originate from the unique micro?nano structure and excellent properties,which can effectively obstruct the formation and propagation of cavitation erosion cracks.
基金Supported by National Natural Science Foundation of China (Grand No. 51422507)
文摘Cavitation erosion (CE) is the predominant cause for the failure of overflow components in fluid machinery. Advanced coatings have provided an effective solution to cavitation erosion due to the rapid development of surface engineering techniques. However, the influence of coating structures on CE resistance has not been sys- tematically studied. To better understand their relationship, micro-nano and conventional WC-10Co4Cr cermet coat- ings are deposited by high velocity oxygen fuel spray- ing(HVOF), and their microstructures are analyzed by OM, SEM and XRD. Meanwhile, characterizations of mechan- ical and electrochemical properties of the coatings are carried out, as well as the coatings' resistance to CE in 3.5 wt % NaC1 solution, and the cavitation mechanisms are explored. Results show that micro-nano WC-10Co4Cr coating possesses dense microstructure, excellent mechanical and electrochemical properties, with very low porosity of 0.26 4-0.07% and extraordinary fracture toughness of 5.58 4-0.51 MPa.m1/2. Moreover, the CE resistance of micro-nano coating is enhanced above 50% than conventional coating at the steady CE period in 3.5 wt % NaC1 solution. The superior CE resistance of micro- nano WC-10Co4Cr coating may originate from the unique micro-nano structure and properties, which can effectively obstruct the formation and propagation of CE crack. Thus,a new method is proposed to enhance the CE resistance of WC-10Co4Cr coating by manipulating the microstructure.