The microstructure and nano-hardness of the pure copper and oxide dispersion-strengthened(ODS) copper alloy subjected to 1.4 Me V Au ions irradiation at room temperature were investigated. After irradiation, disloca...The microstructure and nano-hardness of the pure copper and oxide dispersion-strengthened(ODS) copper alloy subjected to 1.4 Me V Au ions irradiation at room temperature were investigated. After irradiation, dislocation-loops form in both materials, while voids can only be generated in the pure copper. Compared with the irradiated pure copper, larger average diameter and lower number density of irradiation-induced dislocation-loops were detected in the ODS copper alloy, revealing that high-density dislocation and large volume of Al2O3 particles existing in the ODS copper alloy can act as effective sinks for the irradiation-induced defects. It was also detected that irradiation hardening in the ODS copper alloy is lower than that in the pure copper. The microstructure and nano-hardness results reveal that the ODS copper alloy has a better irradiation tolerance than the pure copper. In addition, the average diameter of the Al2O3 particles in the ODS copper alloy decreases after irradiation, because the Al–O chemical bonds are decomposed and the atoms are redistributed in the matrix during the irradiation process. This work reveals that the irradiation tolerance of the copper can be effectively enhanced by adding nano-sized Al2O3 particles into the matrix.展开更多
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri...Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.展开更多
A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using ...A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength.展开更多
The periodic [Ti/TiB2]n (n=l, 2, 3) multilayered films were prepared on the substrate of AISI 316L stainless steel by magnetron sputtering to enhance the adhesion of TiB2 films based on the remarkable mechanical per...The periodic [Ti/TiB2]n (n=l, 2, 3) multilayered films were prepared on the substrate of AISI 316L stainless steel by magnetron sputtering to enhance the adhesion of TiB2 films based on the remarkable mechanical performance of layered films. The influence of periods on microstructure, adhesion and hardness of [Ti/TiB2]n multilayered films was studied. X-ray diffraction (XRD) analysis shows that the monolayer TiB2 films exhibit (001) preferred orientation, and the preferred orientation of [Ti/TiB2], multilayered films transfers from (001) to (100) with the increase of periods. The cross-sectional morphology of each film displays homogeneity by field emission scanning electron microscopy (FESEM). The hardness of the films measured via nanoindention changes from 20 to 26 GPa with the increase of periods. These values of hardness are a bit lower than that of the monolayer TiB2 films which is up to 33 GPa. However, the [Ti/TiB2]n multilayered films present a considerably good adhesion, which reaches a maximum of 24 N, in comparison with the monolayer TiB2 films according to the experimental results.展开更多
ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance ...ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).展开更多
Tribocorrosion tests were conducted on Ti6 Al4 V against alumina in phosphate buffered saline solution under normal loads of 3-30 N(corresponding to the maximum Hertzian contact pressures of 816-1758 MPa) using a ball...Tribocorrosion tests were conducted on Ti6 Al4 V against alumina in phosphate buffered saline solution under normal loads of 3-30 N(corresponding to the maximum Hertzian contact pressures of 816-1758 MPa) using a ball-on-disk tribometer. Nano-hardness measurements revealed the formation of work-hardened layers on the pure wear and tribocorrosion surfaces. As the normal load increased from 15 to 30 N during the pure wear, the surface hardness was increased by about 100%. However, a lower generation of wear debris resulted in a lower wear rate under a normal load of 30 N. The presence of corrosion caused an increase in the wear rates by 28%-245% under various normal loads. The corrosion current density acquired from polarization curves was increased by three orders of magnitude and the open circuit potential(OCP) shifted to more negative potentials during tribocorrosion compared with the stagnant condition. The successive formation and removal of tribofilms, which consisted of oxygen and phosphorous compounds, resulted in peaks in the OCP trend and lower fluctuations in coefficient of friction under normal loads higher than 3 N.展开更多
The paper presents the study of hierarchy of deformation wave-processes from nano- to macro-structural level, which takes place in dissimilar materials, bonded by high-temperature vacuum rolling in solid phase. The fo...The paper presents the study of hierarchy of deformation wave-processes from nano- to macro-structural level, which takes place in dissimilar materials, bonded by high-temperature vacuum rolling in solid phase. The focus was on the processes that occur on the interface of the bonded materials: mass trasfer of impurities and alloying elements stimulated by deformation, the study of nano- and micro-hardness.展开更多
TiA1SiN nano-composite coatings with Silicon contents from 4.1 to 23.9 at.% were deposited on Silicon wafers. The nano- hardness, microstructure, and adhesion force of the coatings were deeply affected by Silicon cont...TiA1SiN nano-composite coatings with Silicon contents from 4.1 to 23.9 at.% were deposited on Silicon wafers. The nano- hardness, microstructure, and adhesion force of the coatings were deeply affected by Silicon contents. The TiA1SiN with 9.0 at.% Silicon has a maximum hardness of 40.9 GPa, a highest adhesion force of 67 N and a lowest friction coefficient of 0.5. Microstructures show that Silicon doping increases the hardness of coating due to solid solution hardening effect and grain boundary enhancement effect. The amorphous Si3N4 matrix, which contains (Ti,Al)N nano-crystals, is formed as the Silicon content is increased. The matrix contributes to the nano-hardness and helps to resist surface oxidization. Especially, the matrix induces low surface roughness and decreases the friction coefficient.展开更多
One of the problems limiting the application of Stellite 6 coating is the residual stress resulting in cracks in the coating easily. In order to reduce the residual stress and increase the nano-indentation hardness,La...One of the problems limiting the application of Stellite 6 coating is the residual stress resulting in cracks in the coating easily. In order to reduce the residual stress and increase the nano-indentation hardness,La2 O3 was added to Stellite 6 coating in this study, and the influence on the microstructure, nano indentation hardness and residual stress of the coatings were investigated by scanning electron microscopy(SEM) with energy dispersive spectrum(EDS), X-ray diffraction(XRD) and nano-indentation tester. Results indicate that the addition of La2 O3 leads to the phenomenon that the dendrite is partly transformed into the equiaxed grain, which results in the grain refinement. The nano-indentation hardness of coatings is improved, which is attributed to the fine-grain strengthening and dispersion strengthening effect of La2 O3. With the addition of La2 O3, the residual stress in coatings is decreased significantly. Especially, when the content of La2 O3 is 0.8 wt%, the nano indentation hardness increases by 1.31 times and residual stress decreases to 20 percent, compared with coating without La2 O3.展开更多
To reduce internal residual stress and homogenize micro-property of hot-rolled ferrite steel,the cold compression deformation method with small reduction rate has been performed in the hot-rolled samples,and X-ray dif...To reduce internal residual stress and homogenize micro-property of hot-rolled ferrite steel,the cold compression deformation method with small reduction rate has been performed in the hot-rolled samples,and X-ray diffraction and nanoindentation test have been used to detect the residual stress and micro-property.The samples with deformation rate of 0-5.59%or annealing at 550℃ are analyzed.The results show that,due to the coupling effect of thermal expansion and cold contraction and the volume expansion of microstructural transformation from austenite to ferrite,compressive residual stress was found inside the hot-rolled samples.With the increase in cold compression deformation,the dislocation density increased and the microhardness increased gradually,and there is no obvious rule for the change of mean nano-hardness in micro-zone for the center of samples.However,the uniformity of nano-hardness in the micro-zone increased first and then decreased,and the value of residual stress has obvious corresponding relationship with the uniformity of micro-zone property.The cold compression deformation with appropriate reduction rate can reduce residual stress and improve nano-hardness uniformity of the hot-rolled samples,but more deformation(such as reduction rateε=5.59%)makes residual stress increase and makes uniformity of nano-hardness deteriorate.展开更多
Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room- temperature compression cracks were investigated. The results showed that the precipitate in the F...Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room- temperature compression cracks were investigated. The results showed that the precipitate in the Fe-6.5Si-0.02B alloy is FezB with body-centered tetragonal structure, and its nano-hardness is 15.0 GPa which is higher than that of the matrix (- 8.5 GPa). In the as-cast alloys, most of the intragranular precipitates are coarse lath-like with the length of 5-15 μm and width of 2-5 μm, and the precipitates formed at the grain boundaries are of about 2-3 μm in width. After oil quenching followed by heat treatment at 1100 ℃ for more than 30 min, the precipitates inside grains are refined with a size of several hundred nanometers and the precipitates at the grain boundaries are refined with a size of 〈 1 μm. After compression test, transgranular and intergranular cracks occur in the as-cast alloys with coarse precipitates. For the quenched alloys with fine precipitates, the number of cracks decreases significantly, and no transgranular cracks happen because some cracks are blocked or the propagation direction is changed by grain boundary.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 11175014, 50971030)the National Basic Research Program of China (No. 11163110)the National Magnetic Confinement Fusion Program (No. 2011GB108002)
文摘The microstructure and nano-hardness of the pure copper and oxide dispersion-strengthened(ODS) copper alloy subjected to 1.4 Me V Au ions irradiation at room temperature were investigated. After irradiation, dislocation-loops form in both materials, while voids can only be generated in the pure copper. Compared with the irradiated pure copper, larger average diameter and lower number density of irradiation-induced dislocation-loops were detected in the ODS copper alloy, revealing that high-density dislocation and large volume of Al2O3 particles existing in the ODS copper alloy can act as effective sinks for the irradiation-induced defects. It was also detected that irradiation hardening in the ODS copper alloy is lower than that in the pure copper. The microstructure and nano-hardness results reveal that the ODS copper alloy has a better irradiation tolerance than the pure copper. In addition, the average diameter of the Al2O3 particles in the ODS copper alloy decreases after irradiation, because the Al–O chemical bonds are decomposed and the atoms are redistributed in the matrix during the irradiation process. This work reveals that the irradiation tolerance of the copper can be effectively enhanced by adding nano-sized Al2O3 particles into the matrix.
文摘Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.
基金Project(51405059)supported by the National Natural Science Foundation of ChinaProject(2014M551074)supported by the China Postdoctoral Science FoundationProject(NCET-10-0278)supported by the Program for New Century Excellent Talents in University
文摘A modified surface layer was formed on Ti-6Al-4V alloy by wet peening treatment. The variations of the residual stress,nano-hardness and microstructure of the modified layer with depth from surface were studied using X-ray diffraction analysis,nano-indentation analysis, scanning electron microscopy and transmission electron microscopy observations. The results show thatboth the compressive residual stress and hardness decrease with increasing depth, and the termination depths are 160 and 80 μm,respectively. The microstructure observation indicates that within 80 μm, the compressive residual stress and the hardness areenhanced by the co-action of the grain refinement strengthening and dislocation strengthening. Within 80–160 μm, the compressiveresidual stress mainly derives from the dislocation strengthening. The strengthened layer in Ti-6Al-4V alloy after wet peeningtreatment was quantitatively analyzed by a revised equation with respect to a relation between hardness and yield strength.
基金Project(51175212)supported by the National Natural Science Foundation of China
文摘The periodic [Ti/TiB2]n (n=l, 2, 3) multilayered films were prepared on the substrate of AISI 316L stainless steel by magnetron sputtering to enhance the adhesion of TiB2 films based on the remarkable mechanical performance of layered films. The influence of periods on microstructure, adhesion and hardness of [Ti/TiB2]n multilayered films was studied. X-ray diffraction (XRD) analysis shows that the monolayer TiB2 films exhibit (001) preferred orientation, and the preferred orientation of [Ti/TiB2], multilayered films transfers from (001) to (100) with the increase of periods. The cross-sectional morphology of each film displays homogeneity by field emission scanning electron microscopy (FESEM). The hardness of the films measured via nanoindention changes from 20 to 26 GPa with the increase of periods. These values of hardness are a bit lower than that of the monolayer TiB2 films which is up to 33 GPa. However, the [Ti/TiB2]n multilayered films present a considerably good adhesion, which reaches a maximum of 24 N, in comparison with the monolayer TiB2 films according to the experimental results.
文摘ZrN fihns were deposited on Si(111) and M2 steel by inductively coupled plasma (ICP)-enhanced RF magnetron sputtering. The effect of ICP power on the microstructure, mechanical properties and corrosion resistance of ZrN films was investigated. When the ICP power is below 300 W, the ZrN films show a columnar structure. With the increase of ICP power, the texture coefficient (To) of the (111) plane, the nanohardness and elastic modulus of the films increase and reach the maximum at a power of 300 W. As the ICP Power exceeds 300 W, the films exhibit a ZrN and ZrNx mixed crystal structure without columnar grain while the nanohardness and elastic modulus of the films decrease. All the ZrN coated samples show a higher corrosion resistance than that of the bare M2 steel substrate in 3.5% NaCl electrolyte. The nanohardness and elastic modulus mostly depend on the crystalline structure and Tc of ZrN(111).
文摘Tribocorrosion tests were conducted on Ti6 Al4 V against alumina in phosphate buffered saline solution under normal loads of 3-30 N(corresponding to the maximum Hertzian contact pressures of 816-1758 MPa) using a ball-on-disk tribometer. Nano-hardness measurements revealed the formation of work-hardened layers on the pure wear and tribocorrosion surfaces. As the normal load increased from 15 to 30 N during the pure wear, the surface hardness was increased by about 100%. However, a lower generation of wear debris resulted in a lower wear rate under a normal load of 30 N. The presence of corrosion caused an increase in the wear rates by 28%-245% under various normal loads. The corrosion current density acquired from polarization curves was increased by three orders of magnitude and the open circuit potential(OCP) shifted to more negative potentials during tribocorrosion compared with the stagnant condition. The successive formation and removal of tribofilms, which consisted of oxygen and phosphorous compounds, resulted in peaks in the OCP trend and lower fluctuations in coefficient of friction under normal loads higher than 3 N.
文摘The paper presents the study of hierarchy of deformation wave-processes from nano- to macro-structural level, which takes place in dissimilar materials, bonded by high-temperature vacuum rolling in solid phase. The focus was on the processes that occur on the interface of the bonded materials: mass trasfer of impurities and alloying elements stimulated by deformation, the study of nano- and micro-hardness.
基金supported by the National Natural Science Foundation of China(Grant No.51105222)the State Key Basic Research Program of China(Grant No.2012CB934101)+1 种基金the Science Fund of the State Key Laboratory of Tribology at Tsinghua University SKLT12A01Beijing Research Program(Grant No.100322002)
文摘TiA1SiN nano-composite coatings with Silicon contents from 4.1 to 23.9 at.% were deposited on Silicon wafers. The nano- hardness, microstructure, and adhesion force of the coatings were deeply affected by Silicon contents. The TiA1SiN with 9.0 at.% Silicon has a maximum hardness of 40.9 GPa, a highest adhesion force of 67 N and a lowest friction coefficient of 0.5. Microstructures show that Silicon doping increases the hardness of coating due to solid solution hardening effect and grain boundary enhancement effect. The amorphous Si3N4 matrix, which contains (Ti,Al)N nano-crystals, is formed as the Silicon content is increased. The matrix contributes to the nano-hardness and helps to resist surface oxidization. Especially, the matrix induces low surface roughness and decreases the friction coefficient.
基金supported by National Natural Science Foundation of China(51575118,51705095)the National Basic Research Program of China(973 Program)(61328303)+1 种基金China Postdoctoral Science Foundation(2017T100225)Fundamental Research Funds for the Central Universities(HEUCF)
文摘One of the problems limiting the application of Stellite 6 coating is the residual stress resulting in cracks in the coating easily. In order to reduce the residual stress and increase the nano-indentation hardness,La2 O3 was added to Stellite 6 coating in this study, and the influence on the microstructure, nano indentation hardness and residual stress of the coatings were investigated by scanning electron microscopy(SEM) with energy dispersive spectrum(EDS), X-ray diffraction(XRD) and nano-indentation tester. Results indicate that the addition of La2 O3 leads to the phenomenon that the dendrite is partly transformed into the equiaxed grain, which results in the grain refinement. The nano-indentation hardness of coatings is improved, which is attributed to the fine-grain strengthening and dispersion strengthening effect of La2 O3. With the addition of La2 O3, the residual stress in coatings is decreased significantly. Especially, when the content of La2 O3 is 0.8 wt%, the nano indentation hardness increases by 1.31 times and residual stress decreases to 20 percent, compared with coating without La2 O3.
基金support from Guangxi Science and Technology Major Project of China(Grant No.AA18242012-1).
文摘To reduce internal residual stress and homogenize micro-property of hot-rolled ferrite steel,the cold compression deformation method with small reduction rate has been performed in the hot-rolled samples,and X-ray diffraction and nanoindentation test have been used to detect the residual stress and micro-property.The samples with deformation rate of 0-5.59%or annealing at 550℃ are analyzed.The results show that,due to the coupling effect of thermal expansion and cold contraction and the volume expansion of microstructural transformation from austenite to ferrite,compressive residual stress was found inside the hot-rolled samples.With the increase in cold compression deformation,the dislocation density increased and the microhardness increased gradually,and there is no obvious rule for the change of mean nano-hardness in micro-zone for the center of samples.However,the uniformity of nano-hardness in the micro-zone increased first and then decreased,and the value of residual stress has obvious corresponding relationship with the uniformity of micro-zone property.The cold compression deformation with appropriate reduction rate can reduce residual stress and improve nano-hardness uniformity of the hot-rolled samples,but more deformation(such as reduction rateε=5.59%)makes residual stress increase and makes uniformity of nano-hardness deteriorate.
基金This research was funded by the Major States Basic Research Development Program of China (973 Program, No. 2011CB606300) and China Postdoctoral Science Foundation (Nos. 2012M520263 and 2013T60110).
文摘Morphology and distribution of precipitates in the Fe-6.5Si-0.02B alloy were characterized, and these effects on room- temperature compression cracks were investigated. The results showed that the precipitate in the Fe-6.5Si-0.02B alloy is FezB with body-centered tetragonal structure, and its nano-hardness is 15.0 GPa which is higher than that of the matrix (- 8.5 GPa). In the as-cast alloys, most of the intragranular precipitates are coarse lath-like with the length of 5-15 μm and width of 2-5 μm, and the precipitates formed at the grain boundaries are of about 2-3 μm in width. After oil quenching followed by heat treatment at 1100 ℃ for more than 30 min, the precipitates inside grains are refined with a size of several hundred nanometers and the precipitates at the grain boundaries are refined with a size of 〈 1 μm. After compression test, transgranular and intergranular cracks occur in the as-cast alloys with coarse precipitates. For the quenched alloys with fine precipitates, the number of cracks decreases significantly, and no transgranular cracks happen because some cracks are blocked or the propagation direction is changed by grain boundary.