The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alph...The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alpha-titanium phosphate (α-TiP) nanoparticles were synthesized and treated with silver salt to enhance their antimicrobial properties. The physicochemical characteristics and antimicrobial activity were evaluated. It was revealed by X-ray diffraction analysis that the structural integrity of α-TiP was influenced by ethylenediamine and silver ions. Distinct degradation profiles for each chemical modification were shown by thermogravimetric analysis. Infrared spectroscopy detected shifts and new absorption peaks in the spectra depending on the type of modification. Energy dispersive spectroscopy confirmed the disaggregation of α-TiP galleries following the addition of silver salt, which increased their effectiveness against microorganisms. Notably, only the sample treated with silver ions exhibited antimicrobial action. Antimicrobial activity was tested against the bacteria of medical importance Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria momocytogenes and the yeast Candida albicans. All microorganisms were inhibited by sample containing silver. Minor inhibition was observed against the Gram-positive bacteria L. monocytogenes and Bacillus cereus, while the greatest inhibition occurred against the fungus (yeast) C. albicans. The results revealed a potential application of the nanoparticles for control of microorganisms in public health.展开更多
Silver nanoparticles are versatile nanomaterials that have found numerous applications in various fields.The use of plant extract for the synthesis of silver is a green and sustainable approach.Clerodendron phlomoides...Silver nanoparticles are versatile nanomaterials that have found numerous applications in various fields.The use of plant extract for the synthesis of silver is a green and sustainable approach.Clerodendron phlomoides leaves extract has been found to contain various phytochemicals,such as phenols,flavonoids,tannins,and alkaloids,which possess reducing and stabilizing properties that can aid the production of silver particles.In this paper,morphological and topographical analyses were performed on silver nanoparticles.The biosynthesized silver nanoparticles showed antimicrobial potential against wound pathogens.SEM and TEM micrographs revealed that the particles were sphere and nanosized,which makes them suitable for various biomedical applications.展开更多
Objective:To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana(E.chapmaniana)and test the antimicrobial of the nanoparticles against different pathogenic bacteria,yeast and its toxicity agai...Objective:To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana(E.chapmaniana)and test the antimicrobial of the nanoparticles against different pathogenic bacteria,yeast and its toxicity against human acute promyelocytic leukemia(HL-60)cell line.Methods:Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO_3 and exposed to sun light for 1 h.A change from yellowish to reddish brown color was observed.Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed.Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,a yellow tetrazole was obtained on the human leukemia cell line(HL-60).Results:UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm.X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50°and 44.76°.The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner.Conclusions:It has been demonstrated that the extract of E.chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution.Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.展开更多
Objective: To investigate the environmental-friendly extracellular biosynthetic technique for the production of the silver nanoparticles(AgN Ps) by using leaf extract of Eucalyptus camaldulensis(E. camaldulensis). Met...Objective: To investigate the environmental-friendly extracellular biosynthetic technique for the production of the silver nanoparticles(AgN Ps) by using leaf extract of Eucalyptus camaldulensis(E. camaldulensis). Methods: The NP were characterized by colour changes and the UV-visible spectroscopy. The cytotoxic effects of prepared AgN Ps was detected against four types of pathogenic bacteria, including two Gram-negative bacteria(Pseudomonas aeruginosa and Escherichia coli) and two Gram-positive bacteria(Staphylococcus aureus and Bacillus subtilis) by using agar well diffusion method. Results: A peak absorption value between 400-450 nm for the extract and the colour change to dark brown were corresponding to the plasmon absorbance of AgN Ps. On the other hand, aqueous extract of E. camaldulensis leaves could be effective against tested microorganisms which showed inhibition zones of 9.0-14.0 mm. Furthermore, biologically synthesized AgN Ps had higher ability to suppress the growth of the tested microorganisms(12.0-19.0 mm). Conclusions: Our findings indicated that extracellular synthesis of Ag NPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgN Ps and also to characterize the toxicity effect of these particles.展开更多
Objective:To synthesize silver nanoparticles(AgNPs) by green methods using scrum latex of Calotropis procera at 80 ℃ and evaluate them against bacteria,dermatophytes and phytopathogenic fungi comparing with the activ...Objective:To synthesize silver nanoparticles(AgNPs) by green methods using scrum latex of Calotropis procera at 80 ℃ and evaluate them against bacteria,dermatophytes and phytopathogenic fungi comparing with the activity of untreated latex.Methods:The synthesis of AgNPs was performed by mixing 3%latex scrum extract with the same volume of silver nitrate(2 mmol/L) solution in round flask and heating in water bath at80 ℃.Characterization of silver particles were determined using UV-vis spectrophotometer,transmission electron microscopy(TEM),X-ray diffraction and Fourier transform infrared spectroscopy.The antimicrobial activity of the green synthesized AgNPs was determined against bacteria,dermatophytes and phytopathogenic fungi and compared to the crude untreated latex by agar-well diffusion methods.Results:Biosynthesis of latex silver nanoparticles was successfully obtained by green method.The formation of AgNPs has been confirmed by UV-vis,TEM microscopy.X-ray diffraction and Fourier transform infrared spectroscopy.TEM analysis showed that synthesized AgNPs are highly stable spherical shaped particles,well dispersed with a diameter ranged from 4 nm up to 25 nm and an average size of 12.33 nm.AgNPs showed strong antibacterial activity against Gram-negative bacteria(Escherichia coli,Pseudomonas aeruginosa and Serratia sp.) and antifungal activity against Trichophyton rubrum,Candida albicans and Aspergillus terreus.Conclusions:It can be concluded that serum latex of Calotropis pmcera was found to display strong potential for the synthesis of AgNPs as antimicrobial agents through rapid reduction of silver ions(Ag^+ to Ag^0).The green synthesized AgNPs were found to show higher antimicrobial efficacy than crude latex.展开更多
Stable silver nanoparticles was successfully synthesized by chemical reduction of silver nitrate in an ionic liquid,1-n-butyl-3-methylimidazolium tetrafluoroborate([BMIM]·BF4) at room temperature.Results of UV-...Stable silver nanoparticles was successfully synthesized by chemical reduction of silver nitrate in an ionic liquid,1-n-butyl-3-methylimidazolium tetrafluoroborate([BMIM]·BF4) at room temperature.Results of UV-Vis diffuse reflectance spectroscopy show as-prepared Ag nanoparticles exhibit a typical emission peak at 400―430 nm.By varying the reaction temperature and the precursor concentration,the size and the shape of the silver nanoparticles could be easily controlled under mild conditions.Analyses of transmission electron micrographs,X-ray diffraction pattern and X-ray photoelectron spectrum further reveal that the silver nanoparticles were coated incompletely by [BMIM]·BF4.Microbial experiments indicate that as-prepared silver nanoparticles show a wide spectrum of antimicrobial activities and have better antimicrobial activities to Pseudomonas aeruginosa than silver nitrate with the same concentration of silver.展开更多
Silver nanoparticles(Ag NPs) are known to have bacteriostatic and bactericidal effects. The present study highlights the extracellular synthesis of Ag NPs and its antibacterial properties. The Ag NPs were synthesize...Silver nanoparticles(Ag NPs) are known to have bacteriostatic and bactericidal effects. The present study highlights the extracellular synthesis of Ag NPs and its antibacterial properties. The Ag NPs were synthesized using Pseudomonas sp. THG-LS1.4 strain which had been isolated from soil. The Ag NPs were characterized by field emission-transmission electron microscopy(FE-TEM), X-ray diffraction(XRD),Fourier transform-infrared(FT-IR) spectroscopy, and particle size distribution(DLS). The Ag NPs displayed maximum absorbance at 412 nm and were irregular in shape ranging from 10 to 40 nm. The XRD spectroscopy results demonstrated the crystalline nature of nanoparticles. The Ag NPs showed antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Candida tropicalis, Vibrio parahaemolyticus, Escherichia coli and Pseudomonas aeruginosa. Furthermore, the Ag NPs were also evaluated for their increased antibacterial activities with various antibiotics against Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. Additionally, Ag NPs showd biofilm inhibition activity. The biosynthesized Ag NPs were found to be a potent agent against tested pathogens. More importantly, we highlight the applications of Ag NPs as an antimicrobial agent.展开更多
<strong>Purpose:</strong> To investigate the effect of silver ionised water on acid production in plaque. <strong>Methods: </strong>After injecting 0.5 mL of silver ionised water (concentration...<strong>Purpose:</strong> To investigate the effect of silver ionised water on acid production in plaque. <strong>Methods: </strong>After injecting 0.5 mL of silver ionised water (concentration: 5 ppm) produced with the sintering coating method in the sensor part of the pH metre, plaque collected from the oral cavity by one platinum loop was mixed in. Immediately after that, a 5% sucrose solution (1 g/20 mL) was added and the pH was continuously measured for 30 minutes at 1-minute intervals (A). Similarly, silver ionised water was mixed with 5% sucrose solution in the same way as in (A) at 3 (B), 5 (C), 10 (D) and 15 minutes (E) after plaque contamination. The pH was measured at 1-minute intervals. The pH of the purified water containing no silver ionised water mixed with plaque and sugar solution at the same time was measured and used as a control. Each experiment was conducted three times, and the pH measured every minute was compared as a percentage of the pH at the beginning of the measurement (100%). <strong>Results:</strong> Analysis of variance of the repeated measurements to determine the effect of silver ionised water on the decrease in pH revealed a main effect of silver ionised water and an interaction between time and group [F<sub>(1.302,20.826)</sub> = 39.145, p < 0.01]. Multiple comparisons using Dunnett’s method showed a significant decline in the rate of decrease in pH from B to E as compared with that in the control (p < 0.01). <strong>Conclusion: </strong>Silver ionised water was found to inhibit the acid production in plaque.展开更多
The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. ...The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free-NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coil, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20 -80, 15 -60, 20 - 55, 40 - 250, and 400 - 1700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.展开更多
In the present work,zinc oxide(ZnO)and silver(Ag)doped ZnO nanostructures are synthesized using a hydrothermal method.Structural quality of the products is attested using X-ray diffraction,which confirms the hexagonal...In the present work,zinc oxide(ZnO)and silver(Ag)doped ZnO nanostructures are synthesized using a hydrothermal method.Structural quality of the products is attested using X-ray diffraction,which confirms the hexagonal wurtzite struc-ture of pure ZnO and Ag-doped ZnO nanostructures.XRD further confirms the crystallite orientation along the c-axis,(101)plane.The field emission scanning electron microscope study reveals the change in shape of the synthesized ZnO particles from hexagonal nanoparticles to needle-shaped nanostructures for 3 wt%Ag-doped ZnO.The optical band gaps and lattice strain of nanostructures is increased significantly with the increase of doping concentration of Ag in ZnO nanostructure.The anti-microbial activity of synthesized nanostructures has been evaluated against the gram-positive human pathogenic bacteria,Staphylococcus aureus via an agarose gel diffusion test.The maximum value of zone of inhibition(22 mm)is achieved for 3 wt%Ag-doped ZnO nanostructure and it clearly demonstrates the remarkable antibacterial activity.展开更多
Infections can hinder orthopedic implant function and retention.Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion.Sever...Infections can hinder orthopedic implant function and retention.Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion.Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems,material science,immunology,and polymer chemistry are in development and early clinical use.This review outlines orthopedic implant antimicrobial technology,its current applications and supporting evidence,and clinically promising future directions.展开更多
The irrational and prolonged use of antibiotics in orthopaedic infections poses a major threat to the development of antimicrobial resistance.To combat antimi-crobial resistance,researchers have implemented various no...The irrational and prolonged use of antibiotics in orthopaedic infections poses a major threat to the development of antimicrobial resistance.To combat antimi-crobial resistance,researchers have implemented various novel and innovative modalities to curb infections.Nanotechnology involves doping ions/metals onto the scaffolds to reach the target site to eradicate the infective foci.In this conno-tation,we reviewed silver nanoparticle technology in terms of mechanism of action,clinical applications,toxicity,and regulatory guidelines to treat ortho-paedic infections.展开更多
Objective:To explore the biosynthesis of silver nanoparticles synthesized by marine microalgae. Methods:Marine microalgae was collected from Central Marine Fisheries Research Institute (CMFRI,tuticorin) and cultured i...Objective:To explore the biosynthesis of silver nanoparticles synthesized by marine microalgae. Methods:Marine microalgae was collected from Central Marine Fisheries Research Institute (CMFRI,tuticorin) and cultured in the lab.Silver nanoparticles synthesis were observed in normal and microwave irradiated microalgae and screened against human pathogens for the presence of antimicrobials.Results:The presence of silver nanoparticle was confirmed by UV-Visible spectroscopy at 420 nm by the presence of plasmon peak.Further confirmation was done by scanning electron microscope(SEM).Conclusions:These results not only provide a base for further research but are useful for drug development in the present and future.展开更多
The present paper deals with gelatin nanofibres functionalized with silver nanoparticles, prepared by electrospinning using solutions of gelatin mixed with silver nitrate (AgNO3). As a common solvent for gelatin and s...The present paper deals with gelatin nanofibres functionalized with silver nanoparticles, prepared by electrospinning using solutions of gelatin mixed with silver nitrate (AgNO3). As a common solvent for gelatin and silver nitrate (AgNO3), a mixture of acetic acid and water (70:30 v/v) was selected. In this system, acetic acid was used as a solvent for gelatin, and at the same time reducing agent for silver ions in solution. Silver nanoparticles (nAg) were stabilized through a mechanism that involves an interaction of the oxygen atoms of the carbonyl groups of gelatin. The viscosity and the conductivity of the gelatinous solutions were found to increase with the solution concentration. There is an observed decrease in the viscosity of the nAg containing gelatin solutions with the aging time increasing, whereas the conductiity of the AgNO3—containing gelatin solutions was greater than that of the base gelatin solution. The gelatin nanofibres functionalized with silver nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and antimicrobial test. The results of investigations by TEM and XRD confirmed the presence of silver nanoparticles with diameters in the range of (2 - 10 nm), uniformly distributed over the surface of smooth nanofibres with an average diameter of 70 nm. The release of silver ions from both the 2- and 4-hrs crosslinked nAg containing gelatin fiber mats by a total immersion method in buffer and distilled water occurred rapidly during the first 60 minutes, and increased gradually afterwards. Lastly, the tests demonstrated that gelatin/Ag nanofibers have a good antimicrobial activity against some common bacteria found on burned wounds. The anti-bacterial activity of these materials was greatest against Staphylococcus aureus, followed by Escherichia coli, and Pseudomonas aeroginosa ≈ Candida albicans.展开更多
This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs...This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs) were produced in colloids via chemical (Ag) or photochemical (Au) reduction of appropriate ions. To prevent the oxidation of Ag NPs in colloid solution, external binary stabilizing agents PVP and SDS were used. Then, Ag and Au NPs (0.01-0.05% wt) were adsorbed from their colloid solutions on high disperse silica surface (Ssp=260m2/g) and samples prepared were dried. Materials obtained were studied by UV-vis, XRD, and TEM methods. Ag and Au NPs adsorbed on silica demonstrated a fair crystallinity in XRD. The surface plasmon resonance (SPR) band positions inherent to Ag and Au NPs on silica surface as well as the intensities of optical spectra were stable during 7 month and more. Obtained Ag NPs in colloids and Ag/SiO2 composites demonstrated excellent antimicrobial activity against a series of the microorganisms (Escherichia coli, Staphylococcus aurous, and Candida albicans). Au/SiO2 samples did not reveal any bactericide properties relative to the test microorganisms grown. The mechanisms of Ag(Au) NPs interaction with silica surface were analyzed.展开更多
文摘The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alpha-titanium phosphate (α-TiP) nanoparticles were synthesized and treated with silver salt to enhance their antimicrobial properties. The physicochemical characteristics and antimicrobial activity were evaluated. It was revealed by X-ray diffraction analysis that the structural integrity of α-TiP was influenced by ethylenediamine and silver ions. Distinct degradation profiles for each chemical modification were shown by thermogravimetric analysis. Infrared spectroscopy detected shifts and new absorption peaks in the spectra depending on the type of modification. Energy dispersive spectroscopy confirmed the disaggregation of α-TiP galleries following the addition of silver salt, which increased their effectiveness against microorganisms. Notably, only the sample treated with silver ions exhibited antimicrobial action. Antimicrobial activity was tested against the bacteria of medical importance Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria momocytogenes and the yeast Candida albicans. All microorganisms were inhibited by sample containing silver. Minor inhibition was observed against the Gram-positive bacteria L. monocytogenes and Bacillus cereus, while the greatest inhibition occurred against the fungus (yeast) C. albicans. The results revealed a potential application of the nanoparticles for control of microorganisms in public health.
文摘Silver nanoparticles are versatile nanomaterials that have found numerous applications in various fields.The use of plant extract for the synthesis of silver is a green and sustainable approach.Clerodendron phlomoides leaves extract has been found to contain various phytochemicals,such as phenols,flavonoids,tannins,and alkaloids,which possess reducing and stabilizing properties that can aid the production of silver particles.In this paper,morphological and topographical analyses were performed on silver nanoparticles.The biosynthesized silver nanoparticles showed antimicrobial potential against wound pathogens.SEM and TEM micrographs revealed that the particles were sphere and nanosized,which makes them suitable for various biomedical applications.
基金Supported by University of Technology.Baghdad.Iraq and Universiti Kebangsaan Malaysia(Grant No.DIP-2012-02)
文摘Objective:To synthesize silver nanopaticles from leaves extract of Eucalyptus chapmaniana(E.chapmaniana)and test the antimicrobial of the nanoparticles against different pathogenic bacteria,yeast and its toxicity against human acute promyelocytic leukemia(HL-60)cell line.Methods:Ten milliliter of leaves extract was mixed with 90 mL of 0.01 mmol/mL or 0.02 mmol/mL aqueous AgNO_3 and exposed to sun light for 1 h.A change from yellowish to reddish brown color was observed.Characterization using UV-vis spectrophotometery and X-ray diffraction analysis were performed.Antimicrobial activity against six microorganisms was tested using well diffusion method and cytoxicity test using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,a yellow tetrazole was obtained on the human leukemia cell line(HL-60).Results:UV-vis spectral analysis showed silver surface plasmon resonance band at 413 nm.X-ray diffraction showed that the particles were crystalline in nature with face centered cubic structure of the bulk silver with broad beaks at 38.50°and 44.76°.The synthesized silver nanoparticles efficiently inhibited various pathogenic organisms and reduced viability of the HL-60 cells in a dose-dependent manner.Conclusions:It has been demonstrated that the extract of E.chapmaniana leaves are capable of producing silver nanoparticles extracellularly and the Ag nanoparticles are quite stable in solution.Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial and anticancer activity of these particles.
基金the Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University for their generous support in providing funds for availing the required facilities throughout the experimental period of this work
文摘Objective: To investigate the environmental-friendly extracellular biosynthetic technique for the production of the silver nanoparticles(AgN Ps) by using leaf extract of Eucalyptus camaldulensis(E. camaldulensis). Methods: The NP were characterized by colour changes and the UV-visible spectroscopy. The cytotoxic effects of prepared AgN Ps was detected against four types of pathogenic bacteria, including two Gram-negative bacteria(Pseudomonas aeruginosa and Escherichia coli) and two Gram-positive bacteria(Staphylococcus aureus and Bacillus subtilis) by using agar well diffusion method. Results: A peak absorption value between 400-450 nm for the extract and the colour change to dark brown were corresponding to the plasmon absorbance of AgN Ps. On the other hand, aqueous extract of E. camaldulensis leaves could be effective against tested microorganisms which showed inhibition zones of 9.0-14.0 mm. Furthermore, biologically synthesized AgN Ps had higher ability to suppress the growth of the tested microorganisms(12.0-19.0 mm). Conclusions: Our findings indicated that extracellular synthesis of Ag NPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgN Ps and also to characterize the toxicity effect of these particles.
文摘Objective:To synthesize silver nanoparticles(AgNPs) by green methods using scrum latex of Calotropis procera at 80 ℃ and evaluate them against bacteria,dermatophytes and phytopathogenic fungi comparing with the activity of untreated latex.Methods:The synthesis of AgNPs was performed by mixing 3%latex scrum extract with the same volume of silver nitrate(2 mmol/L) solution in round flask and heating in water bath at80 ℃.Characterization of silver particles were determined using UV-vis spectrophotometer,transmission electron microscopy(TEM),X-ray diffraction and Fourier transform infrared spectroscopy.The antimicrobial activity of the green synthesized AgNPs was determined against bacteria,dermatophytes and phytopathogenic fungi and compared to the crude untreated latex by agar-well diffusion methods.Results:Biosynthesis of latex silver nanoparticles was successfully obtained by green method.The formation of AgNPs has been confirmed by UV-vis,TEM microscopy.X-ray diffraction and Fourier transform infrared spectroscopy.TEM analysis showed that synthesized AgNPs are highly stable spherical shaped particles,well dispersed with a diameter ranged from 4 nm up to 25 nm and an average size of 12.33 nm.AgNPs showed strong antibacterial activity against Gram-negative bacteria(Escherichia coli,Pseudomonas aeruginosa and Serratia sp.) and antifungal activity against Trichophyton rubrum,Candida albicans and Aspergillus terreus.Conclusions:It can be concluded that serum latex of Calotropis pmcera was found to display strong potential for the synthesis of AgNPs as antimicrobial agents through rapid reduction of silver ions(Ag^+ to Ag^0).The green synthesized AgNPs were found to show higher antimicrobial efficacy than crude latex.
文摘Stable silver nanoparticles was successfully synthesized by chemical reduction of silver nitrate in an ionic liquid,1-n-butyl-3-methylimidazolium tetrafluoroborate([BMIM]·BF4) at room temperature.Results of UV-Vis diffuse reflectance spectroscopy show as-prepared Ag nanoparticles exhibit a typical emission peak at 400―430 nm.By varying the reaction temperature and the precursor concentration,the size and the shape of the silver nanoparticles could be easily controlled under mild conditions.Analyses of transmission electron micrographs,X-ray diffraction pattern and X-ray photoelectron spectrum further reveal that the silver nanoparticles were coated incompletely by [BMIM]·BF4.Microbial experiments indicate that as-prepared silver nanoparticles show a wide spectrum of antimicrobial activities and have better antimicrobial activities to Pseudomonas aeruginosa than silver nitrate with the same concentration of silver.
基金conducted under the industrial infrastructure program (No. N0000888) for fundamental technologies which is funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea)
文摘Silver nanoparticles(Ag NPs) are known to have bacteriostatic and bactericidal effects. The present study highlights the extracellular synthesis of Ag NPs and its antibacterial properties. The Ag NPs were synthesized using Pseudomonas sp. THG-LS1.4 strain which had been isolated from soil. The Ag NPs were characterized by field emission-transmission electron microscopy(FE-TEM), X-ray diffraction(XRD),Fourier transform-infrared(FT-IR) spectroscopy, and particle size distribution(DLS). The Ag NPs displayed maximum absorbance at 412 nm and were irregular in shape ranging from 10 to 40 nm. The XRD spectroscopy results demonstrated the crystalline nature of nanoparticles. The Ag NPs showed antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Candida tropicalis, Vibrio parahaemolyticus, Escherichia coli and Pseudomonas aeruginosa. Furthermore, the Ag NPs were also evaluated for their increased antibacterial activities with various antibiotics against Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. Additionally, Ag NPs showd biofilm inhibition activity. The biosynthesized Ag NPs were found to be a potent agent against tested pathogens. More importantly, we highlight the applications of Ag NPs as an antimicrobial agent.
文摘<strong>Purpose:</strong> To investigate the effect of silver ionised water on acid production in plaque. <strong>Methods: </strong>After injecting 0.5 mL of silver ionised water (concentration: 5 ppm) produced with the sintering coating method in the sensor part of the pH metre, plaque collected from the oral cavity by one platinum loop was mixed in. Immediately after that, a 5% sucrose solution (1 g/20 mL) was added and the pH was continuously measured for 30 minutes at 1-minute intervals (A). Similarly, silver ionised water was mixed with 5% sucrose solution in the same way as in (A) at 3 (B), 5 (C), 10 (D) and 15 minutes (E) after plaque contamination. The pH was measured at 1-minute intervals. The pH of the purified water containing no silver ionised water mixed with plaque and sugar solution at the same time was measured and used as a control. Each experiment was conducted three times, and the pH measured every minute was compared as a percentage of the pH at the beginning of the measurement (100%). <strong>Results:</strong> Analysis of variance of the repeated measurements to determine the effect of silver ionised water on the decrease in pH revealed a main effect of silver ionised water and an interaction between time and group [F<sub>(1.302,20.826)</sub> = 39.145, p < 0.01]. Multiple comparisons using Dunnett’s method showed a significant decline in the rate of decrease in pH from B to E as compared with that in the control (p < 0.01). <strong>Conclusion: </strong>Silver ionised water was found to inhibit the acid production in plaque.
文摘The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free-NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coil, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20 -80, 15 -60, 20 - 55, 40 - 250, and 400 - 1700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.
基金the research facilities in the Department of Physics,Ch.Charan Singh University,Meerut,Uttar Pradesh,India.This work was supported by the UGC,Govt.of India[No.F.30-303/2016(BSR),F.D.Dy.No.11299]。
文摘In the present work,zinc oxide(ZnO)and silver(Ag)doped ZnO nanostructures are synthesized using a hydrothermal method.Structural quality of the products is attested using X-ray diffraction,which confirms the hexagonal wurtzite struc-ture of pure ZnO and Ag-doped ZnO nanostructures.XRD further confirms the crystallite orientation along the c-axis,(101)plane.The field emission scanning electron microscope study reveals the change in shape of the synthesized ZnO particles from hexagonal nanoparticles to needle-shaped nanostructures for 3 wt%Ag-doped ZnO.The optical band gaps and lattice strain of nanostructures is increased significantly with the increase of doping concentration of Ag in ZnO nanostructure.The anti-microbial activity of synthesized nanostructures has been evaluated against the gram-positive human pathogenic bacteria,Staphylococcus aureus via an agarose gel diffusion test.The maximum value of zone of inhibition(22 mm)is achieved for 3 wt%Ag-doped ZnO nanostructure and it clearly demonstrates the remarkable antibacterial activity.
文摘Infections can hinder orthopedic implant function and retention.Current implant-based antimicrobial strategies largely utilize coating-based approaches in order to reduce biofilm formation and bacterial adhesion.Several emerging antimicrobial technologies that integrate a multidisciplinary combination of drug delivery systems,material science,immunology,and polymer chemistry are in development and early clinical use.This review outlines orthopedic implant antimicrobial technology,its current applications and supporting evidence,and clinically promising future directions.
文摘The irrational and prolonged use of antibiotics in orthopaedic infections poses a major threat to the development of antimicrobial resistance.To combat antimi-crobial resistance,researchers have implemented various novel and innovative modalities to curb infections.Nanotechnology involves doping ions/metals onto the scaffolds to reach the target site to eradicate the infective foci.In this conno-tation,we reviewed silver nanoparticle technology in terms of mechanism of action,clinical applications,toxicity,and regulatory guidelines to treat ortho-paedic infections.
基金the Department of Biotechnology,Govt,of India for sanctioning this study under the student project scheme for the year 2009-2010approved by the TamilNadu Sate Council for Science and Technology(TNSCST),an autonomous body under Govt,of Tamilnadu
文摘Objective:To explore the biosynthesis of silver nanoparticles synthesized by marine microalgae. Methods:Marine microalgae was collected from Central Marine Fisheries Research Institute (CMFRI,tuticorin) and cultured in the lab.Silver nanoparticles synthesis were observed in normal and microwave irradiated microalgae and screened against human pathogens for the presence of antimicrobials.Results:The presence of silver nanoparticle was confirmed by UV-Visible spectroscopy at 420 nm by the presence of plasmon peak.Further confirmation was done by scanning electron microscope(SEM).Conclusions:These results not only provide a base for further research but are useful for drug development in the present and future.
文摘The present paper deals with gelatin nanofibres functionalized with silver nanoparticles, prepared by electrospinning using solutions of gelatin mixed with silver nitrate (AgNO3). As a common solvent for gelatin and silver nitrate (AgNO3), a mixture of acetic acid and water (70:30 v/v) was selected. In this system, acetic acid was used as a solvent for gelatin, and at the same time reducing agent for silver ions in solution. Silver nanoparticles (nAg) were stabilized through a mechanism that involves an interaction of the oxygen atoms of the carbonyl groups of gelatin. The viscosity and the conductivity of the gelatinous solutions were found to increase with the solution concentration. There is an observed decrease in the viscosity of the nAg containing gelatin solutions with the aging time increasing, whereas the conductiity of the AgNO3—containing gelatin solutions was greater than that of the base gelatin solution. The gelatin nanofibres functionalized with silver nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and antimicrobial test. The results of investigations by TEM and XRD confirmed the presence of silver nanoparticles with diameters in the range of (2 - 10 nm), uniformly distributed over the surface of smooth nanofibres with an average diameter of 70 nm. The release of silver ions from both the 2- and 4-hrs crosslinked nAg containing gelatin fiber mats by a total immersion method in buffer and distilled water occurred rapidly during the first 60 minutes, and increased gradually afterwards. Lastly, the tests demonstrated that gelatin/Ag nanofibers have a good antimicrobial activity against some common bacteria found on burned wounds. The anti-bacterial activity of these materials was greatest against Staphylococcus aureus, followed by Escherichia coli, and Pseudomonas aeroginosa ≈ Candida albicans.
文摘This work is devoted to the synthesis and stabilization of nanosized Ag/SiO2 and Au/SiO2 disperse materials and investigation their morphology, optical and antimicrobial properties. First, Ag and Au nanoparticles (NPs) were produced in colloids via chemical (Ag) or photochemical (Au) reduction of appropriate ions. To prevent the oxidation of Ag NPs in colloid solution, external binary stabilizing agents PVP and SDS were used. Then, Ag and Au NPs (0.01-0.05% wt) were adsorbed from their colloid solutions on high disperse silica surface (Ssp=260m2/g) and samples prepared were dried. Materials obtained were studied by UV-vis, XRD, and TEM methods. Ag and Au NPs adsorbed on silica demonstrated a fair crystallinity in XRD. The surface plasmon resonance (SPR) band positions inherent to Ag and Au NPs on silica surface as well as the intensities of optical spectra were stable during 7 month and more. Obtained Ag NPs in colloids and Ag/SiO2 composites demonstrated excellent antimicrobial activity against a series of the microorganisms (Escherichia coli, Staphylococcus aurous, and Candida albicans). Au/SiO2 samples did not reveal any bactericide properties relative to the test microorganisms grown. The mechanisms of Ag(Au) NPs interaction with silica surface were analyzed.