Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hami...Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.展开更多
Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of ...Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.展开更多
Chiral microstructures exist widely in natural biological materials such as wood, bone, and climbing tendrils. The helical shape of such microstructures plays an important role in stress transfer between fiber and mat...Chiral microstructures exist widely in natural biological materials such as wood, bone, and climbing tendrils. The helical shape of such microstructures plays an important role in stress transfer between fiber and matrix,and in the mechanical properties of biological materials. In this paper, helical fiber fragmentation behavior is studied numerically using the finite-element method(FEM), and then, the effects of helical shape on fiber deformation and fracture,and the corresponding mechanical mechanisms are investigated. The results demonstrate that, to a large degree, the initial microfibril angle(MFA) determines the elastic deformation and fracture behavior of fibers. For fibers with a large MFA, the interfacial area usually has large values, inducing a relatively low fragment density during fiber fragmentation. This work may be helpful in understanding the relationship between microstructure and mechanical property in biological materials, and in the design and fabrication of bio-inspired advanced functional materials.展开更多
1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a st...1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a string of fairy lights, side branches that meet between the strands and hold them together. It is the sequence of these paired side branches (bases) that stores the information needed to define a protein. Three of the bases in sequence provide the information which, translated by the cell' s machinery, codes for a particular amino acid. Amino acids polymerise to make up specific proteins and, eventually, us. In defining an organism, that can weigh several tons, in its sequence of bases, the minute amount of DNA necessary for this task is an amazing example of data compression. When I was at school in Cambridge, shortly after Crick and Watson had worked out the basic structure of DNA for their Nobel prize, an enterprising breakfast cereal company had a cardboard cut-out DNA double spiral on the back of their packets. No doubt if you ate enough breakfasts you could save up for a whole gene. I don' t know what bit of protein the DNA coded for - I suspect no one did at the time. I remember another of the big names in genetics, Sydney Brenner (whose son went to our school and who later also got a Nobel prize),展开更多
Silver nano-particles with average diameter of about 60 nm were compacted in a high-strength mold under different pressures at 523 K to produce nano-structured Ag solid materials. The structure and characteristic of t...Silver nano-particles with average diameter of about 60 nm were compacted in a high-strength mold under different pressures at 523 K to produce nano-structured Ag solid materials. The structure and characteristic of the nano-structured Ag solid materials (NSS-Ag) were studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectrometer. The NSS-Ag could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. The common probe molecules Rhodamine 6G (R6G, 1×10-10 mol/L) were used to test the SERS activity on these substrates at very low concentrations. It is found that the SERS enhancement ability is dependent on the density of NSS-Ag. When the relative density of NSS-Ag is 83.87%, the materials reveal great SERS signal.展开更多
In the modern material engineering, the use of nanometer materials has entered the highly and intensively utilized stage, so new nanometer materials have been continuously found to replace the traditional ordinary mat...In the modern material engineering, the use of nanometer materials has entered the highly and intensively utilized stage, so new nanometer materials have been continuously found to replace the traditional ordinary materials. The so-called nanometer materials have the size within l - 100nm in thickness, which originates from the 1980s. At that time, nanometer materials didn't have a proper development due to the economic level. t towever, with the support of science and technology, this technology has undergone tremendous changes in the related fields. There have been increasing expansion in the kinds and the width in use of the nanometer materials, so have the research of nanometer materials. In this paper, we will briefly analyze the application ofnanometer materials in the sports engineering.展开更多
Biological materials of garlic, Wulong-tea and human hair were investigated by 14.2 MeV proton activation analysis using internal standard method. Elemental concentrations of Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Sr,...Biological materials of garlic, Wulong-tea and human hair were investigated by 14.2 MeV proton activation analysis using internal standard method. Elemental concentrations of Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Sr, Cd, La and Pb in biological samples were determined under the 5×10-8-2×10-5g/g of展开更多
More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontane...More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontaneous acquisition of proteinaceous “conditioning films” of differing degrees of denaturation but usually of the same substances within any given system. This led to the understanding that useful engineering control of such interactions could thus be manifested through adjustments to those surface properties, giving significant control and utility to the biomaterials developer without requiring detailed discovery of the biological specifications of the components involved. Thus, effective selection of adhesive versus abhesive (non-stick, non-retention) outcomes for such useful appliances as dental implants versus substitute blood vessels, or water-resistant bonded structures versus clean, nontoxic ship bottoms is now facilitated with little biological background required. A historical overview is presented, followed by a brief survey of the forces involved and most useful analyses applied. Utility for blood-contacting materials is described in contrast to utility for bone- and tissue-contacting materials, demonstrating practical uses in controlling cell-surface interactions and preventing biofouling. New research directions being explored are noted, urging applications of this prior knowledge to replace the use of toxicants.展开更多
DNA is a biological macromolecule that carries genetic information in organisms.It provides a series of predominant bio-logical advantages,such as sequence programmability,high biocompatibility,and low biotoxicity.As ...DNA is a biological macromolecule that carries genetic information in organisms.It provides a series of predominant bio-logical advantages,such as sequence programmability,high biocompatibility,and low biotoxicity.As such,it is a unique polymer material that shows great potential for application in biological and medical fields.DNA aptamers are short DNA sequences with a specific ability of molecular recognition.With its discovery,the application prospect of DNA materials has broadened,especially for the separation and analysis of biological particles.In this review,the functions and characteristics of DNA aptamers are introduced,and the applications of DNA materials in cell/exosome separation and cancer detection are summarized.The application prospect and possible challenges of DNA materials are predicted.展开更多
Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive prop...Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.展开更多
By making the use of the processes which includes separating trash and solid materials from the wastewater-ammonia stripping tower-UASB-biological oxidation pond, we have treated the wastewater which comes from the sw...By making the use of the processes which includes separating trash and solid materials from the wastewater-ammonia stripping tower-UASB-biological oxidation pond, we have treated the wastewater which comes from the swine factory. The treated wastewater can meet the primary standard of The People's Republic of China based on sewage discharge standards and the wastewater treatment project design contract (GBl8596-2001), and the effluent will be used as irrigation-water. We introduce this project including the quality of influent and effluent and the flow scheme, the statement of every part, the investment and the effect, etc. The operation indicated that this process has many merits such as the stability in operation-effect and the convenience in management. So it will provide some help for the similar wastewater treatment.展开更多
The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established...The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.展开更多
The optimum media height of carbon oxidation and nitrification in a down-flow biological aerated filter was determined, and the distribution of the heterotrophic and nitrifying populations through studying the changes...The optimum media height of carbon oxidation and nitrification in a down-flow biological aerated filter was determined, and the distribution of the heterotrophic and nitrifying populations through studying the changes of organic carbon contents and ammonia concentration at different media height was got. The results showed that as a down flow BAF with granular media, the active layer of nitrifiers was deeper than heterotrophs in BAF. And the optimum media height for the removal of SS, COD Cr and NH + 4-N was 40 cm,60 cm and 80 cm respectively. The removal efficiency of SS, COD Cr and NH + 4-N was 79.1%, 63.9% and 96.4% respectively under the influent COD Cr and NH + 4-N of 122.1 mgCOD Cr /L and 14.84 mgNH + 4-N/L, the influent flux of 15.8 L/h, air to liquid ratio of 3∶1.展开更多
The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering can...The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering cannot capture the microscale humidity inside cement-based materials in situ. In this paper, a method of using rhodamine 6G fluorescence to characterize the change in relative humidity in cement-based materials is proposed. Two kinds of moulding processes are designed, which are premixed and smeared after moulding, and the optimal preparation concentration is explored. The results showed that rhodamine 6G can reflect the relative humidity of cement-based materials in situ by its fluorescence intensity and had little effect on the hydration heat release and hydration products of cement-based materials;the fluorescence intensity was much higher when the internal relative humidity was 63% and 75%. The research results lead the application of polymer materials in the field of traditional building materials, help to explore the performance evolution law of cement-based materials in micro scale, and have important significance for the evolution from single discipline to interdisciplinary.展开更多
In this study,a functionalized covalent-organic framework(COF)was first synthesized using porphyrin as the fabrication unit and showed an edge-curled,petal-like and well-ordered structure.The synthesized COF was then ...In this study,a functionalized covalent-organic framework(COF)was first synthesized using porphyrin as the fabrication unit and showed an edge-curled,petal-like and well-ordered structure.The synthesized COF was then introduced to prepare porous organic polymer monolithic materials(POPMs).Two composite POPM/COF monolithic materials with rod shapes,referred to as sorbent A and sorbent B,were prepared in stainless steel tubes using different monomers.Sorbents A and B exhibited relatively uniform porous structures and enhanced specific surface areas of 153.14 m;/g and 80.01 m;/g,respectively.The prepared composite monoliths were used as in-tube solid-phase extraction(SPE)sorbents combined with HPLC for the on-line extraction and quantitative analytical systems.Indole alkaloids(from Catharanthus roseus G.Don and Uncaria rhynchophylla(Miq.)Miq.Ex Havil.)contained in mouse plasma were extracted and quantitatively analyzed using the online system.The two composite multifunctional monoliths showed excellent clean-up ability for complex biological matrices,as well as superior selectivity for target indole alkaloids.Method validation showed that the RSD values of the repeatability(n=6)were≤3.46%,and the accuracy expressed by the spiked recoveries was in the ranges of 99.38%-100.91%and 96.39%-103.50%for vinca alkaloids and Uncaria alkaloids,respectively.Furthermore,sorbents A and B exhibited strong reusability,with RSD values≤5.32%,which were based on the peak area of the corresponding alkaloids with more than 100 injections.These results indicate that the composite POPM/COF rod-shaped monoliths are promising media as SPE sorbents for extracting trace compounds in complex biological samples.展开更多
Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle...Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.展开更多
With the purpose to smooth the way of a correct understanding of information concepts and their evolution,in this paper,is discussed the evolution and development of the concept of information in biological systems,sh...With the purpose to smooth the way of a correct understanding of information concepts and their evolution,in this paper,is discussed the evolution and development of the concept of information in biological systems,showing that this concept was intuitively perceived even since ancient times by our predecessors,and described according to their language level of that times,but the crystallization of the real meaning of information is an achievement of our nowadays,by successive contribution of various scientific branches and personalities of the scientific community of the world,leading to a modern description/modeling of reality,in which information plays a fundamental role.It is shown that our reality can be understood as a contribution of matter/energy/information and represented/discussed as the model of the Universal Triangle of Reality(UTR),where various previous models can be suggestively inserted,as a function of their basic concern.The modern concepts on information starting from a theoretic experiment which would infringe the thermodynamics laws and reaching the theory of information and modern philosophic concepts on the world structuration allow us to show that information is a fundamental component of the material world and of the biological structures,in correlation with the structuration/destructuration processes of matter,involving absorption/release of information.Based on these concepts,is discussed the functionality of the biologic structures and is presented the informational model of the human body and living structures,as a general model of info-organization on the entire biological scale,showing that a rudimentary proto-consciousness should be operative even at the low-scale biological systems,because they work on the same principles,like the most developed bio-systems.The operability of biologic structures as informational devices is also pointed out.展开更多
文摘Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.
文摘Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.
基金supported by the National Natural Science Foundation of China(Nos.11472191,11172207,and 11272230)
文摘Chiral microstructures exist widely in natural biological materials such as wood, bone, and climbing tendrils. The helical shape of such microstructures plays an important role in stress transfer between fiber and matrix,and in the mechanical properties of biological materials. In this paper, helical fiber fragmentation behavior is studied numerically using the finite-element method(FEM), and then, the effects of helical shape on fiber deformation and fracture,and the corresponding mechanical mechanisms are investigated. The results demonstrate that, to a large degree, the initial microfibril angle(MFA) determines the elastic deformation and fracture behavior of fibers. For fibers with a large MFA, the interfacial area usually has large values, inducing a relatively low fragment density during fiber fragmentation. This work may be helpful in understanding the relationship between microstructure and mechanical property in biological materials, and in the design and fabrication of bio-inspired advanced functional materials.
文摘1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a string of fairy lights, side branches that meet between the strands and hold them together. It is the sequence of these paired side branches (bases) that stores the information needed to define a protein. Three of the bases in sequence provide the information which, translated by the cell' s machinery, codes for a particular amino acid. Amino acids polymerise to make up specific proteins and, eventually, us. In defining an organism, that can weigh several tons, in its sequence of bases, the minute amount of DNA necessary for this task is an amazing example of data compression. When I was at school in Cambridge, shortly after Crick and Watson had worked out the basic structure of DNA for their Nobel prize, an enterprising breakfast cereal company had a cardboard cut-out DNA double spiral on the back of their packets. No doubt if you ate enough breakfasts you could save up for a whole gene. I don' t know what bit of protein the DNA coded for - I suspect no one did at the time. I remember another of the big names in genetics, Sydney Brenner (whose son went to our school and who later also got a Nobel prize),
基金Project(10804101) supported by the National Natural Science Foundation of ChinaProject(2007CB815102) supported by the National Basic Research Program of ChinaProject(2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Silver nano-particles with average diameter of about 60 nm were compacted in a high-strength mold under different pressures at 523 K to produce nano-structured Ag solid materials. The structure and characteristic of the nano-structured Ag solid materials (NSS-Ag) were studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectrometer. The NSS-Ag could be used as highly efficient surface-enhanced Raman scattering (SERS) active substrates. The common probe molecules Rhodamine 6G (R6G, 1×10-10 mol/L) were used to test the SERS activity on these substrates at very low concentrations. It is found that the SERS enhancement ability is dependent on the density of NSS-Ag. When the relative density of NSS-Ag is 83.87%, the materials reveal great SERS signal.
文摘In the modern material engineering, the use of nanometer materials has entered the highly and intensively utilized stage, so new nanometer materials have been continuously found to replace the traditional ordinary materials. The so-called nanometer materials have the size within l - 100nm in thickness, which originates from the 1980s. At that time, nanometer materials didn't have a proper development due to the economic level. t towever, with the support of science and technology, this technology has undergone tremendous changes in the related fields. There have been increasing expansion in the kinds and the width in use of the nanometer materials, so have the research of nanometer materials. In this paper, we will briefly analyze the application ofnanometer materials in the sports engineering.
基金The Project Supported by National Natural Science Foundation of China
文摘Biological materials of garlic, Wulong-tea and human hair were investigated by 14.2 MeV proton activation analysis using internal standard method. Elemental concentrations of Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ge, Se, Sr, Cd, La and Pb in biological samples were determined under the 5×10-8-2×10-5g/g of
文摘More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontaneous acquisition of proteinaceous “conditioning films” of differing degrees of denaturation but usually of the same substances within any given system. This led to the understanding that useful engineering control of such interactions could thus be manifested through adjustments to those surface properties, giving significant control and utility to the biomaterials developer without requiring detailed discovery of the biological specifications of the components involved. Thus, effective selection of adhesive versus abhesive (non-stick, non-retention) outcomes for such useful appliances as dental implants versus substitute blood vessels, or water-resistant bonded structures versus clean, nontoxic ship bottoms is now facilitated with little biological background required. A historical overview is presented, followed by a brief survey of the forces involved and most useful analyses applied. Utility for blood-contacting materials is described in contrast to utility for bone- and tissue-contacting materials, demonstrating practical uses in controlling cell-surface interactions and preventing biofouling. New research directions being explored are noted, urging applications of this prior knowledge to replace the use of toxicants.
文摘DNA is a biological macromolecule that carries genetic information in organisms.It provides a series of predominant bio-logical advantages,such as sequence programmability,high biocompatibility,and low biotoxicity.As such,it is a unique polymer material that shows great potential for application in biological and medical fields.DNA aptamers are short DNA sequences with a specific ability of molecular recognition.With its discovery,the application prospect of DNA materials has broadened,especially for the separation and analysis of biological particles.In this review,the functions and characteristics of DNA aptamers are introduced,and the applications of DNA materials in cell/exosome separation and cancer detection are summarized.The application prospect and possible challenges of DNA materials are predicted.
文摘Three-dimensional (3-D)self-assembly of nanos- tructures and nanodevices on a large scale remains a grand quest for mankind.Freestanding nanostructured assemblies with controlled 3-D shapes can exhibit attractive properties for sensor and other applications. Protocols for 3-D self-assembly that can be scaled up for mass production on a large up to tonnage)scale, while preserving morphological features on a small (down to nanometer)scale,are needed to allow for widespread use of 3-D nanostructures in advanced devices.However,these often conflicting requirements of scalability and precision pose a difficult challenge for synthetic (man-made)processing routes.
文摘By making the use of the processes which includes separating trash and solid materials from the wastewater-ammonia stripping tower-UASB-biological oxidation pond, we have treated the wastewater which comes from the swine factory. The treated wastewater can meet the primary standard of The People's Republic of China based on sewage discharge standards and the wastewater treatment project design contract (GBl8596-2001), and the effluent will be used as irrigation-water. We introduce this project including the quality of influent and effluent and the flow scheme, the statement of every part, the investment and the effect, etc. The operation indicated that this process has many merits such as the stability in operation-effect and the convenience in management. So it will provide some help for the similar wastewater treatment.
基金supported by the National Natural Science Foundation of China(grant No.52375247)Natural Science Foundation of Jiangsu Province(grant No.BK20201421)+3 种基金Graduate Research and Innovation Projects of Jiangsu Province(grant No.KYCX21-3380)Jiangsu Agricultural Science and Technology Independent Innovation Fund(grant No.CX(22)3090)Taizhou Science and Technology Project(grant No.TN202101)a Project Funded by the Priority Academic Program Development of Jiangsu Higher。
文摘The kinetic model is the theoretical basis for optimizing the structure and operation performance of vibration screening devices.In this paper,a biological neurodynamic equation and neural connections were established according to the motion and interaction properties of the material under vibration excitation.The material feeding to the screen and the material passing through apertures were considered as excitatory and inhibitory inputs,respectively,and the generated stable neural activity landscape was used to describe the material distribution on the 2D screen surface.The dynamic process of material vibration screening was simulated using discrete element method(DEM).By comparing the similarity between the material distribution established using biological neural network(BNN)and that obtained using DEM simulation,the optimum coefficients of BNN model under a certain screening parameter were determined,that is,one relationship between the BNN model coefficients and the screening operation parameters was established.Different screening parameters were randomly selected,and the corresponding relationships were established as a database.Then,with straw/grain ratio,aperture diameter,inclination angle,vibration strength in normal and tangential directions as inputs,five independent adaptive neuro-fuzzy inference systems(ANFIS)were established to predict the optimum BNN model coefficients,respectively.The training results indicated that ANFIS models had good stability and accuracy.The flexibility and adaptability of the proposed BNN method was demonstrated by modeling material distribution under complex feeding conditions such as multiple regions and non-uniform rate.
文摘The optimum media height of carbon oxidation and nitrification in a down-flow biological aerated filter was determined, and the distribution of the heterotrophic and nitrifying populations through studying the changes of organic carbon contents and ammonia concentration at different media height was got. The results showed that as a down flow BAF with granular media, the active layer of nitrifiers was deeper than heterotrophs in BAF. And the optimum media height for the removal of SS, COD Cr and NH + 4-N was 40 cm,60 cm and 80 cm respectively. The removal efficiency of SS, COD Cr and NH + 4-N was 79.1%, 63.9% and 96.4% respectively under the influent COD Cr and NH + 4-N of 122.1 mgCOD Cr /L and 14.84 mgNH + 4-N/L, the influent flux of 15.8 L/h, air to liquid ratio of 3∶1.
基金Project(2018YFD1101002) supported by the National Key R&D Program of ChinaProject(51308405) supported by the National Natural Science Foundation of China。
文摘The transmission and distribution of moisture in cement-based materials are of great significance to the properties and durability of materials. Traditional macro-humidity monitoring equipment in civil engineering cannot capture the microscale humidity inside cement-based materials in situ. In this paper, a method of using rhodamine 6G fluorescence to characterize the change in relative humidity in cement-based materials is proposed. Two kinds of moulding processes are designed, which are premixed and smeared after moulding, and the optimal preparation concentration is explored. The results showed that rhodamine 6G can reflect the relative humidity of cement-based materials in situ by its fluorescence intensity and had little effect on the hydration heat release and hydration products of cement-based materials;the fluorescence intensity was much higher when the internal relative humidity was 63% and 75%. The research results lead the application of polymer materials in the field of traditional building materials, help to explore the performance evolution law of cement-based materials in micro scale, and have important significance for the evolution from single discipline to interdisciplinary.
基金supported by the Natural Science Foundation of Hebei Province (Grant No.: B2020201002)the National Natural Science Foundation of China (Grant Nos.: 21974034 and 21505030)the Interdisciplinary Research Project of Natural Science of Hebei University (Grant No.: DXK201912)
文摘In this study,a functionalized covalent-organic framework(COF)was first synthesized using porphyrin as the fabrication unit and showed an edge-curled,petal-like and well-ordered structure.The synthesized COF was then introduced to prepare porous organic polymer monolithic materials(POPMs).Two composite POPM/COF monolithic materials with rod shapes,referred to as sorbent A and sorbent B,were prepared in stainless steel tubes using different monomers.Sorbents A and B exhibited relatively uniform porous structures and enhanced specific surface areas of 153.14 m;/g and 80.01 m;/g,respectively.The prepared composite monoliths were used as in-tube solid-phase extraction(SPE)sorbents combined with HPLC for the on-line extraction and quantitative analytical systems.Indole alkaloids(from Catharanthus roseus G.Don and Uncaria rhynchophylla(Miq.)Miq.Ex Havil.)contained in mouse plasma were extracted and quantitatively analyzed using the online system.The two composite multifunctional monoliths showed excellent clean-up ability for complex biological matrices,as well as superior selectivity for target indole alkaloids.Method validation showed that the RSD values of the repeatability(n=6)were≤3.46%,and the accuracy expressed by the spiked recoveries was in the ranges of 99.38%-100.91%and 96.39%-103.50%for vinca alkaloids and Uncaria alkaloids,respectively.Furthermore,sorbents A and B exhibited strong reusability,with RSD values≤5.32%,which were based on the peak area of the corresponding alkaloids with more than 100 injections.These results indicate that the composite POPM/COF rod-shaped monoliths are promising media as SPE sorbents for extracting trace compounds in complex biological samples.
基金supported by the National Natural Science Foundation of China(11025208,11372042,and 11221202)
文摘Biological materials such as bone, tooth, and nacre are load-bearing nanocomposites composed of mineral and protein. Since the mineral crystals often have slender geometry, the nanocomposites are susceptible to buckle under the compressive load. In this paper, we analyze the local buckling behaviors of the nanocomposite structure of the biological materials using a beam-spring model by which we can consider plenty of mineral crystals and their interaction in our analysis compared with existing studies. We show that there is a transition of the buckling behaviors from a local buckling mode to a global one when we continuously increase the aspect ratio of mineral, leading to an increase of the buckling strength which levels off to the strength of the composites reinforced with continuous crystals. We find that the contact condition at the mineral tips has a striking effect on the local buckling mode at small aspect ratio, but the effect diminishes when the aspect ratio is large. Our analyses also show that the staggered arrangement of mineral plays a central role in the stability of the biological nanocomposites.
文摘With the purpose to smooth the way of a correct understanding of information concepts and their evolution,in this paper,is discussed the evolution and development of the concept of information in biological systems,showing that this concept was intuitively perceived even since ancient times by our predecessors,and described according to their language level of that times,but the crystallization of the real meaning of information is an achievement of our nowadays,by successive contribution of various scientific branches and personalities of the scientific community of the world,leading to a modern description/modeling of reality,in which information plays a fundamental role.It is shown that our reality can be understood as a contribution of matter/energy/information and represented/discussed as the model of the Universal Triangle of Reality(UTR),where various previous models can be suggestively inserted,as a function of their basic concern.The modern concepts on information starting from a theoretic experiment which would infringe the thermodynamics laws and reaching the theory of information and modern philosophic concepts on the world structuration allow us to show that information is a fundamental component of the material world and of the biological structures,in correlation with the structuration/destructuration processes of matter,involving absorption/release of information.Based on these concepts,is discussed the functionality of the biologic structures and is presented the informational model of the human body and living structures,as a general model of info-organization on the entire biological scale,showing that a rudimentary proto-consciousness should be operative even at the low-scale biological systems,because they work on the same principles,like the most developed bio-systems.The operability of biologic structures as informational devices is also pointed out.