期刊文献+
共找到236篇文章
< 1 2 12 >
每页显示 20 50 100
Tribological Behaviors of Electroless Nickel-Boron Coating on Titanium Alloy Surface
1
作者 Yao Jia Jianping Lai +3 位作者 Jiaxin Yu Huimin Qi Yafeng Zhang Hongtu He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期309-320,共12页
Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological p... Titanium alloys are excellent structural materials in engineering fields,but their poor tribological properties limit their further applications.Electroless plating is an effective method to enhance the tribological performance of alloys,but it is difficult to efficiently apply to titanium alloys,due to titanium alloy’s strong chemical activity.In this work,the electroless Nickel-Boron(Ni-B)coating was successfully deposited on the surface of titanium alloy(Ti-6AL-4V)via a new pre-treatment process.Then,linearly reciprocating sliding wear tests were performed to evaluate the tribological behaviors of titanium alloy and its electroless Ni-B coatings.It was found that the Ni-B coatings can decrease the wear rate of the titanium alloy from 19.89×10^(−3)mm^(3)to 0.41×10^(−3)mm^(3),which attributes to the much higher hardness of Ni-B coatings.After heat treatment,the hardness of Ni-B coating further increases corresponding to coating crystallization and hard phase formation.However,heat treatment does not improve the tribological performance of Ni-B coating,due to the fact that higher brittleness and more severe oxidative wear exacerbate the damage of heat-treated coatings.Furthermore,the Ni-B coatings heat-treated both in air and nitrogen almost present the same tribological performance.The finding of this work on electroless coating would further extend the practical applications of titanium alloys in the engineering fields. 展开更多
关键词 Electroless coating Titanium alloy TRIBOLOGY WEAR Heat treatment NANOINDENTATION
下载PDF
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
2
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates MICROSTRUCTURE NANOINDENTATION
下载PDF
Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
3
作者 何茜 徐子翼 倪玉山 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期603-612,共10页
Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced... Temperature effect on atomic deformation of nanotwinned Ni (nt-Ni) under localized nanoindentation is investigated in comparison with nanocrystalline Ni (nc-Ni) through molecular simulation.The nt-Ni exhibits enhanced critical load and hardness compared to nc-Ni,where perfect,stair-rod and Shockley dislocations are activated at (111),(111) and (111) slip planes in nt-Ni compared to only SSockley dislocation nucleation at (111) and (111) slip planes of nc-Ni.The nt-Ni exhibits a less significant indentation size effect in comparison with nc-Ni due to the dislocation slips hindrance of the twin boundary.The atomic deformation associated with the indentation size effect is investigated during dislocation transmission.Different from the decreasing partial slips parallel to the indenter surface in nc-Ni with increasing temperature,the temperaturedependent atomic deformation of nt-Ni is closely related to the twin boundary:from the partial slips parallel to the twin boundary (~10 K),to increased confined layer slips and decreased twin migration(300 K–600 K),to decreased confined layer slips and increased dislocation interaction of dislocation pinning and dissociation (900 K–1200 K).Dislocation density and atomic structure types through quantitative analysis are implemented to further reveal the above-mentioned dislocation motion and atomic structure alteration.Our study is helpful for understanding the temperature-dependent plasticity of twin boundary in nanotwinned materials. 展开更多
关键词 NANOINDENTATION twin boundary plastic deformation molecular dynamics simulation
下载PDF
Design multifunctional Mg–Zr coatings regulating Mg alloy bioabsorption
4
作者 Zohra Benzarti Sandesh Itani +2 位作者 JoséDavid Castro Sandra Carvalho Ana Sofia Ramos 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1461-1478,共18页
Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequ... Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequate strength limit their applicability.To overcome this,the direct current magnetron sputtering technique is employed for surface coating in Mg-based alloys using various zirconium(Zr)content.This approach presents a promising strategy for simultaneously improving corrosion resistance,maintaining biocompatibility,and enhancing strength without compromising osseointegration.By leveraging Mg’s inherent biodegradability,it has the potential to minimize the need for secondary surgeries,thereby reducing costs and resources.This paper is a systematic study aimed at understanding the corrosion mechanisms of Mg–Zr coatings,denoted Mg-xZr(x=0–5 at.%).Zr-doped coatings exhibited columnar growth leading to denser and refined structures with increasing Zr content.XRD analysis confirmed the presence of the Mg(00.2)basal plane,shifting towards higher angles(1.15°)with 5 at.%Zr doping due to lattice parameter changes(i.e.,decrease and increase of“c”and“a”lattice parameters,respectively).Mg–Zr coatings exhibited“liquidphilic”behavior,while Young’s modulus retained a steady value around 80 GPa across all samples.However,the hardness has significantly improved across all samples’coating,reaching the highest value of(2.2±0.3)GPa for 5 at.%Zr.Electrochemical testing in simulated body fluid(SBF)at 37℃ revealed a significant enhancement in corrosion resistance for Mg–Zr coatings containing 1.0–3.4 at.%Zr.Compared with the 5 at.%Zr coating which exhibited a corrosion rate of 32 mm/year,these coatings displayed lower corrosion rates,ranging from 1 to 12 mm/year.This synergistic enhancement in mechanical properties and corrosion resistance,achieved with 2.0–3.4 at.%Zr,suggests potential ability for reducing stress shielding and controlled degradation performance,and consequently,promising functional biodegradable materials for temporary bone implants. 展开更多
关键词 Mg-Zr coatings Magnetron sputtering NANOINDENTATION Corrosion resistance Bone implants
下载PDF
Correlation of work function and stacking fault energy through Kelvin probe force microscopy and nanohardness in diluteα-magnesium
5
作者 Yigit Türe Ali Arslan Kaya +2 位作者 Hüseyin Aydin Jiang Peng Servet Turan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期237-250,共14页
Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work ... Electronic interactions of the Group 2A elements with magnesium have been studied through the dilute solid solutions in binary Mg-Ca,Mg-Sr and Mg-Ba systems.This investigation incorporated the difference in the‘Work Function'(ΔWF)measured via Kelvin Probe Force Microscopy(KPFM),as a property directly affected by interatomic bond types,i.e.the electronic structure,nanoindentation measurements,and Stacking Fault Energy values reported in the literature.It was shown that the nano-hardness of the solid-solutionα-Mg phase changed in the order of Mg-Ca>Mg-Sr>Mg-Ba.Thus,it was shown,by also considering the nano-hardness levels,that SFE of a solid-solution is closely correlated with its‘Work Function'level.Nano-hardness measurements on the eutectics andΔWF difference between eutectic phases enabled an assessment of the relative bond strength and the pertinent electronic structures of the eutectics in the three alloys.Correlation withΔWF and at least qualitative verification of those computed SFE values with some experimental measurement techniques were considered important as those computational methods are based on zero Kelvin degree,relatively simple atomic models and a number of assumptions.As asserted by this investigation,if the results of measurement techniques can be qualitatively correlated with those of the computational methods,it can be possible to evaluate the electronic structures in alloys,starting from binary systems,going to ternary and then multi-elemental systems.Our investigation has shown that such a qualitative correlation is possible.After all,the SFE values are not treated as absolute values but rather become essential in comparative investigations when assessing the influences of alloying elements at a fundamental level,that is,free electron density distributions.Our study indicated that the principles of‘electronic metallurgy'in developing multi-elemental alloy systems can be followed via practical experimental methods,i.e.ΔWF measurements using KPFM and nanoindentation. 展开更多
关键词 Mg alloys Dilute alloys Work function Stacking fault energy Kelvin probe force microscopy Short range order Miedema NANOINDENTATION EUTECTICS
下载PDF
Investigation of point defect evolution and Voronoi cluster analysis for magnesium during nanoindentation 被引量:2
6
作者 Pragyan Goswami Snehanshu Pal Manoj Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1029-1042,共14页
The present study investigates the effect of nanoindentation on single-crystal magnesium specimens using the embedded-atom method potential in molecular dynamics simulation.Analyses are done under dynamic loading wher... The present study investigates the effect of nanoindentation on single-crystal magnesium specimens using the embedded-atom method potential in molecular dynamics simulation.Analyses are done under dynamic loading where the load-bearing capacity and change in the structural configuration are studied on the basal(Z-direction)and two prismatic planes(X-and Y-directions)with varying indenter velocities.The investigation of structural evolution is done using atomic displacement analyses to measure the net magnitude of displacement,atomic strain analyses to evaluate the shear strain developed in the process,and Wigner-Seitz defect analyses to calculate the total vacancies at varied timesteps.Furthermore,Voronoi analyses are done when indented on the basal plane to identify the cluster distribution at different planar depths of the specimen.From the analyses,it has been observed that the load-bearing capacity of the specimen varies with the indentation velocity and the direction of indentation on the specimen.Additionally,it is seen that the observed shear and total atomic displacement in the Z-direction is the least in comparison to the other two axes.The partial dislocation 1/3<-12-10>is seen to be majorly present and the population of dislocation loops is more abundant for lower indenter velocities.Furthermore,clusters<0,4,4,6>and<0,6,0,8>are the major indices developed during nanoindentation on the basal plane where they exhibit symmetrical distribution as observed from the Z-direction. 展开更多
关键词 MAGNESIUM Molecular dynamics NANOINDENTATION Voronoi analysis Wigner-Seitz defect analysis
下载PDF
Overdischarge-induced evolution of Cu dendrites and degradation of mechanical properties in lithium-ion batteries 被引量:1
7
作者 Zixin Guo Siguo Yang +5 位作者 Wenyang Zhao Shenghui Wang Jiong Liu Zhichao Ma Hongwei Zhao Luquan Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期497-506,I0014,共11页
The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between d... The degradation of mechanical properties of overdischarge battery materials manifests as a significant effect on the energy density,safety,and cycle life of the batteries.However,establishing the correlation between depth of overdischarge and mechanical properties is still a significant challenge.Studying the correlation between depth of overdischarge and mechanical properties is of great significance to improving the energy density and the ability to resist abuse of the batteries.In this paper,the mechanical properties of the battery materials during the whole process of overdischarge from discharge to complete failure were studied.The effects of depth of overdischarge on the elastic modulus and hardness of the cathode of the battery,the tensile strength and the thermal shrinkage rate of the separator,and the performance of binder were investigated.The precipitation of Cu dendrites on the separator and cathode after dissolution of anode copper foil is a key factor affecting the performance of battery materials.The Cu dendrites attached to the cathode penetrate the separator,causing irreversible damage to the coating and base film of the separator,which leads to a sharp decline in the tensile strength,thermal shrinkage rate and other properties of the separator.In addition,the Cu dendrites wrapping the cathode active particles reduce the adhesion of the active particles binder.Meanwhile,the active particles are damaged,resulting in a significant decrease in the elastic modulus and hardness of the cathode. 展开更多
关键词 Overdischarge Cu dendrites Mechanical properties NANOINDENTATION Micron scratch
下载PDF
Effects of coals microscale structural features on their mechanical properties,propensity to crushing and fine dust formation
8
作者 Elena Kossovich Svetlana Epshtein +2 位作者 Vera Krasilova Jie Hao Maxim Minin 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期146-158,共13页
The work is dedicated to revealing the structural features of coals with different ranks,such as anthracites,metaanthracite and graphite,that determine their ability to crush and form fine dust.For this purpose,a comb... The work is dedicated to revealing the structural features of coals with different ranks,such as anthracites,metaanthracite and graphite,that determine their ability to crush and form fine dust.For this purpose,a combination of various nanoin-dentation techniques and Raman spectroscopy was used.The mechanical behavior of the selected coals was investigated by cyclic nanoindentation with increasing peak load and quasi-static loading.The alteration of the mechanical properties was studied by analysis of elastic moduli and damage indices Rw.Three groups of coals were identified based on their propensity to crushing during cyclic nanoindentation.Coals assigned to the first and second groups are characterized by local destruction in the contact zone with the indenter and the formation of a core of crushed material.Coals assigned to the third group are characterized by bulk destruction(outside the zone of contact with the indenter).In general,the ability of coals to fracture under mechanical loading decreases in the series of metamorphism due to microscale compaction of vitrinite matter.In the series of anthracite,metaanthracite and graphite,it is established that the coal matter compaction takes place for the anthracite and metaanthracite,whereas graphite reveals rather different behavior due to abrupt change of its structure.The ratios between the amorphous and crystalline phases of carbon(S)were determined by deconvolution of coals Raman spectra.The propensity of coals to crushing(a damage index Rw)increases with growth of the proportion of amorphous carbon in the coal matter.For the considered coals and metaanthracite,it is established that the proneness to destruction outside the contact zone with the indenter is determined by the ratio of amorphous and crystalline carbon of 1 and higher.When S parameter is lower than 1,the coals are being crushed only in the zone of contact with the indenter. 展开更多
关键词 Coal CRUSHING Cyclic nanoindentation Raman spectroscopy Amorphous carbon Crystalline carbon
下载PDF
In situ TEM observations and molecular dynamics simulations of deformation defect activities in Mg via nanoindentation
9
作者 Yi-Cheng Lai Yubin Ying +3 位作者 Digvijay Yadav Jose Guerrero Yong-Jie Hu Kelvin Y.Xie 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4513-4524,共12页
In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations ... In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both dislocation retraction and detwinning. Moreover,we note that the plastic zone comprised of dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that,in addition to dislocations, the I1stacking fault bounded with a <1/2c+p> Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of dislocation slip and twinning in Mg and alloys. 展开更多
关键词 In situ TEM Molecular dynamics simulation DISLOCATION TWINNING Mg NANOINDENTATION
下载PDF
The Influence of Crystallographic Orientation and Grain Boundary on Nanoindentation Behavior of Inconel 718 Superalloy Based on Crystal Plasticity Theory
10
作者 Wenbo Zhu Guangjian Yuan +2 位作者 Jianping Tan Shuai Chang Shantung Tu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期385-396,共12页
The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation st... The crystal plasticity finite element method(CPFEM)is widely used to explore the microscopic mechanical behavior of materials and understand the deformation mechanism at the grain-level.However,few CPFEM simulation studies have been carried out to analyze the nanoindentation deformation mechanism of polycrystalline materials at the microscale level.In this study,a three-dimensional CPFEM-based nanoindentation simulation is performed on an Inconel 718 polycrystalline material to examine the influence of different crystallographic parameters on nanoindentation behavior.A representative volume element model is developed to calibrate the crystal plastic constitutive parameters by comparing the stress-strain data with the experimental results.The indentation force-displacement curves,stress distributions,and pile-up patterns are obtained by CPFEM simulation.The results show that the crystallographic orientation and grain boundary have little influence on the force-displacement curves of the nanoindentation,but significantly influence the local stress distributions and shape of the pile-up patterns.As the difference in crystallographic orientation between grains increases,changes in the pile-up patterns and stress distributions caused by this effect become more significant.In addition,the simulation results reveal that the existence of grain boundaries affects the continuity of the stress distribution.The obstruction on the continuity of stress distribution increases as the grain boundary angle increases.This research demonstrates that the proposed CPFEM model can well describe the microscopic compressive deformation behaviors of Inconel 718 under nanoindentation. 展开更多
关键词 Crystal plasticity Grain boundary Crystallographic orientation NANOINDENTATION
下载PDF
Stress distribution variations during nanoindentation failure of hard coatings on silicon substrates
11
作者 Ritambhara Dash Kushal Bhattacharyya Arnab S.Bhattacharyya 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第4期1-10,共10页
Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implant... Regarding quality inspection of technologically important nanocomposite hard coatings based on Ti,B,Si,C,and N and bioceramics such as hydroxyapatite that are used in small-scale high-precision devices and bio-implants,it is essential to study the failure mechanisms associated with nanoindentation,such as fracture,delamination,and chipping.The stress imposed by the indenter can affect the fracture morphology and the interfacial fracture energy,depending on indenter shape,substrate type,crystallographic properties,pre-existing flaws,internal microcracks,and pre-strain.Reported here are finite-element-based fracture studies that provide insights into the different cracking mechanisms related to the aforementioned failure process,showing that the fracture morphology is affected by the interaction of different cracking events.The interfacial fracture energy,toughness,and residual stress are calculated using existing models with minor adjustments,and it is found that increasing the indenter sharpness improves the shear stress distribution,making the coating more prone to separation.Depending on the prevailing type of stress,the stress distribution beneath the depression results in either crack formation or a dislocation pile-up leading to strain hardening.Different forms of resistances resulting from the indentation process are found to affect the tip–sample conduction,and because of its stronger induced plasticity than that of a Berkovich indenter tip,a sharper cube-corner tip produces more resistance. 展开更多
关键词 NANOINDENTATION Hard film Finite-element analysis(FEA) Cracking mechanism STRESS
下载PDF
Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste:Strengths,Shrinkage,Nanoscale Characteristics,and Environmental Analysis
12
作者 Zhihai He Menglu Shen +3 位作者 Jinyan Shi Jingyu Chang Víctor Revilla-Cuesta Osman Gencel 《Journal of Renewable Materials》 SCIE EI 2023年第4期1835-1852,共18页
Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials.This study aims to investigate the effect of recycled gla... Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials.This study aims to investigate the effect of recycled glass powder(RGP)on the early-age mechanical properties and autogenous shrinkage of cement pastes,where cement is replaced by 10%,20%and 30%of RGP.In addition,the microstructure and nano-mechanical properties of cement paste with different RGP content and water to binder(W/B)ratio were also evaluated using SEM,MIP and nanoindentation techniques.The results indicate that the early-age autogenous shrinkage decreases with the increase of RGP content and W/B ratio.While the mechanical strength deteriorates due to the addition of RGP,it can be compensated by reducing the W/B ratio.Although the addition of RGP increases the total porosity of the hardened paste,it reduces the small size porosity(<50 nm).In addition,the proportions of different types of C-S-H are changed,and the volume fraction of porosity is increased,but that of hydration products of cement paste is reduced due to the incorporation of RGP.Besides its pozzolanic activity,the mitigated shrinkage deformation that RGP is generating in cement pastes is encouraging for its use as a novel supplementary cementitious material that reduces the early-age cracking risk of cement-based materials.Meanwhile,the life cycle assessments indicate that the RGP-cement component is an economical and eco-friendly novel engineering material. 展开更多
关键词 Cement paste waste glass powder autogenous shrinkage microstructure NANOINDENTATION
下载PDF
Micro-mechanical properties of shale due to water/supercritical carbon dioxide-rock interaction
13
作者 LI Ning JIN Zhijun +4 位作者 ZHANG Shicheng WANG Haibo YANG Peng ZOU Yushi ZHOU Tong 《Petroleum Exploration and Development》 SCIE 2023年第4期1001-1012,共12页
To investigate the impacts of water/supercritical CO_(2)-rock interaction on the micro-mechanical properties of shale,a series of high-temperature and high-pressure immersion experiments were performed on the calcareo... To investigate the impacts of water/supercritical CO_(2)-rock interaction on the micro-mechanical properties of shale,a series of high-temperature and high-pressure immersion experiments were performed on the calcareous laminated shale samples mined from the lower submember of the third member of Paleogene Shahejie Formation in the Jiyang Depression,Bohai Bay Basin.After that,grid nanoindentation tests were conducted to analyze the influence of immersion time,pressure,and temperature on micro-mechanical parameters.Experimental results show that the damage of shale caused by the water/supercritical CO_(2)-rock interaction was mainly featured by the generation of induced fractures in the clay-rich laminae.In the case of soaking with supercritical CO_(2),the aperture of induced fracture was smaller.Due to the existence of induced fractures,the statistical averages of elastic modulus and hardness both decreased.Meanwhile,compaction and stress-induced tensile fractures could be observed around the laminae.Generally,the longer the soaking time,the higher the soaking pressure and temperature,the more significant the degradation of micro-mechanical parameters is.Compared with water-rock interaction,the supercritical CO_(2)-rock interaction caused a lower degree of mechanical damage on the shale surface.Thus,supercritical CO_(2)can be used as a fracturing fluid to prevent the surface softening of induced fractures in shale reservoirs. 展开更多
关键词 SHALE HYDRATION supercritical CO_(2) micro-mechanical properties NANOINDENTATION shale damage
下载PDF
Mechanical and Wear Properties of Nanostructured Surface Layer in Iron Induced by Surface Mechanical Attrition Treatment 被引量:17
14
作者 NairongTAO WeipingTONG +4 位作者 ZhenboWANG WeiWANG ManlingSUI JianLU KeLU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期563-566,共4页
A porosity-free and contamination-free surface layer with grain sizes ranging from nanometer to micrometer in Fe samples was obtained by surface mechanical attrition treatment (SMAT) technique. Mechanical and wear pro... A porosity-free and contamination-free surface layer with grain sizes ranging from nanometer to micrometer in Fe samples was obtained by surface mechanical attrition treatment (SMAT) technique. Mechanical and wear properties of the surface layer in the SMATed and annealed Fe samples were measured by means of nanoindentation and nanoscratch tests, respectively. Experimental results showed that the hardness of the surface layer in the SMATed Fe sample increased evidently due to the grain refinement. The elastic moduli of the surface layers in the SMATed and annealed Fe samples were unchanged, independent of grain size in the present grain size regime. Compared with the original Fe sample, the wear resistance enhanced and the coefficient of friction decreased in the surface layer of the SMATed Fe sample. 展开更多
关键词 NANOCRYSTALLITES IRON NANOINDENTATION HARDNESS WEAR
下载PDF
Comparison between the surface defects caused by Al_2O_3 and TiN inclusions in interstitial-free steel auto sheets 被引量:11
15
作者 Rui Wang Yan-ping Bao +2 位作者 Zhi-jie Yan Da-zhao Li Yan Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第2期178-185,共8页
Al_2O_3 and TiN inclusions in interstitial-free(IF) steel deteriorate the properties of the steel. To decrease the defects of cold-rolled sheet, it is important to clearly distinguish between the degrees of damage cau... Al_2O_3 and TiN inclusions in interstitial-free(IF) steel deteriorate the properties of the steel. To decrease the defects of cold-rolled sheet, it is important to clearly distinguish between the degrees of damage caused by these two inclusions on the surface quality of the steel. In this study, a nanoindenter was used to test the mechanical properties of the inclusions, and the distribution and size of the inclusions were obtained by scanning electron microscopy(SEM). It was found that when only mechanical properties are considered, TiN inclusions are more likely to cause defects than Al_2O_3 inclusions of the same size during the rolling process. However, Al_2O_3 inclusions are generally more inclined to cause defects in the rolling process than TiN inclusions because of their distribution characteristic in the thickness direction. The precipitation of Al_2O_3 and TiN was obtained through thermodynamical calculations. The growth laws of inclusions at different cooling rates were calculated by solidification and segregation models. The results show that the precipitation regularity is closely related to the distribution law of the inclusions in IF slabs along the thickness direction. 展开更多
关键词 interstitial-free steel INCLUSIONS nanoindenter INCLUSION PRECIPITATION
下载PDF
The Sandfish's Skin:Morphology,Chemistry and Reconstruction 被引量:10
16
作者 Werner Baumgartner Friederike Saxe +6 位作者 Agnes Weth David Hajas Darwin Sigumonrong Jens Emmerlich Martin Singheiser Wolfgang Bhme Jochen M. Schneider 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第1期1-9,共9页
The sandfish is a lizard having the remarkable ability to move in desert sand in a swimming-like fashion. The most outstanding adaptations to this mode of life are the low friction behaviour and the extensive abrasion... The sandfish is a lizard having the remarkable ability to move in desert sand in a swimming-like fashion. The most outstanding adaptations to this mode of life are the low friction behaviour and the extensive abrasion resistance of the sandfish skin against sand, outperforming even steel. We investigated the topography, the composition and the mechanical properties of sandfish scales. These consist of glycosylated keratins with high amount of sulphur but no hard inorganic material, such as silicates or lime. Remarkably, atomic force microscopy shows an almost complete absence of attractive forces between the scale surface and a silicon tip, suggesting that this is responsible for the unusual tribological properties. The unusual glycosylation of the keratins was found to be absolutely necessary for the described phenomenon. The scales were dissolved and reconstituted on a polymer surface resulting in properties similar to the original scale. Thus, we provide a pathway towards exploitation of the reconstituted scale material for future engineering applications. 展开更多
关键词 Sandfish SKINK Scincus scincus TRIBOLOGY NANOINDENTATION KERATIN ABRASION
下载PDF
Mechanism of brittle-ductile transition of a glass-ceramic rigid substrate 被引量:10
17
作者 Yu-li Sun Dun-wen Zuo Hong-yu Wang Yong-wei Zhu Jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第2期229-233,共5页
The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indente... The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa?m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth 展开更多
关键词 brittle-ductile transition critical conditions glass ceramics NANOINDENTATION NANOSCRATCH
下载PDF
Characterization of microarc oxidation coatings on pure titanium 被引量:9
18
作者 XUE Wenbin, WANG Chao, Li Yongliang, and CHEN RuyiKey Laboratory for Beam Technology and Materials Modification, Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875, China 《Rare Metals》 SCIE EI CAS CSCD 2003年第1期42-48,共7页
Key Laboratory for Beam Technology and Materials Modification, Institute ofLow Energy Nuclear Physics, Beijing Normal UniversityThe morphology, composition, and phase structure of the oxide coatings produced on the su... Key Laboratory for Beam Technology and Materials Modification, Institute ofLow Energy Nuclear Physics, Beijing Normal UniversityThe morphology, composition, and phase structure of the oxide coatings produced on the surface ofpure titanium by alternating-current microarc discharge in aluminate solution were investigated byX-ray diffraction and scanning electron microscopy. The profiles of the hardness H and the elasticmodulus E in the coatings were determined using a nanoindentation method. The concentrationdistributions of Ti, Al, and O in the coating show that this coating over 30 mu m thick contains twolayers: an outer layer and an inner layer. The oxide coating is mainly composed of TiO_2 rutile andAl_2TiO_5 compounds. During oxidation, the temperature in the microarc discharge channel was veryhigh to make the local coating molten. From the surface to the interior of the coating, H and Eincrease gradually, and then reach maximum values of 9.78 GPa and 176 GPa respectively at a distanceof 7 mu m from the coating/titanium interface. They are also rather high near the interface. 展开更多
关键词 pure titanium ceramic coating microarc oxidation MICROSTRUCTURE NANOINDENTATION
下载PDF
Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications 被引量:9
19
作者 T.Sampath Kumar S.Balasivanandha Prabu +1 位作者 Geetha Manivasagam K.A.Padmanabhan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第8期796-805,共10页
Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were charac... Monolayer and bilayer coatings of TiAlN, AlCrN, and AlCrN/TiAlN were deposited onto tungsten carbide inserts using the plasma enhanced physical vapor deposition process. The microstructures of the coatings were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM micrographs revealed that the AlrN and AlCrN/TiAlN coatings were uniform and highly dense and contained only a limited number of microvoids. The TiAIN coating was non-uniform and highly porous and contained more micro droplets. The hardness and scratch resistance of the specimens were measured using a nanoindentation tester and scratch tester, respectively. Different phases formed in the coatings were analyzed by X-ray diffraction (XRD). The AlCrN/TiAlN coating exhibited a higher hardness (32.75 GPa), a higher Young's modulus (561.97 GPa), and superior scratch resistance (LcN = 46 N) compared to conventional coatings such as TiAlN, A1CrN, and TiN. 展开更多
关键词 cutting tools COATINGS physical vapor deposition characterization NANOINDENTATION
下载PDF
Creep characteristics of coal and rock investigated by nanoindentation 被引量:10
20
作者 Changlun Sun Guichen Li +2 位作者 Mohamed Elgharib Gomah Jiahui Xu Yuantian Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期769-776,共8页
In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight in... In coal mining industry,with the depth growing of coal mines,the creep behaviours of coal and rock can extensively affect the mining safety,coalbed methane recovery and geo-sequestration.To acquire a better insight into their creep characteristics,an efficient and robust researching technique,nanoindentation,was applied to investigate the creep performances of coal and rock samples obtained from two coal mines in the east of China.Creep characteristics were reflected by evaluating the curves of creep depth versus creep time of nanoindentation tests during the load-holding period at the peak load of 30 mN.These curves can be divided into two stages:transient stage and steady stage;and the time of load-holding period of 5 s,which is the dividing point between two stages,can efficiently avoid the influence of creep displacement on the unloading curves.The exponential function can perfectly fit creep curves and Kelvin model can be used to calculate the rheological parameters of coal and rock samples.Calculated results yield values for the creep modulus and viscosity terms of coal and rock.This study also settled a particular emphasis on the selection of the positions of indentations to obtain the rheological properties of mineralogical constituents in heterogonous coal and rock samples and their elastic aftereffect. 展开更多
关键词 Coal and rock NANOINDENTATION CREEP Heterogeneous properties Elastic aftereffect
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部