期刊文献+
共找到4,917篇文章
< 1 2 246 >
每页显示 20 50 100
Silica nanoparticle design for colorectal cancer treatment:Recent progress and clinical potential
1
作者 Jin Meng Zhi-Gang Wang +12 位作者 Xiu Zhao Ying Wang De-Yu Chen De-Long Liu Cheng-Chun Ji Tian-Fu Wang Li-Mei Zhang Hai-Xia Bai Bo-Yang Li Yuan Liu Lei Wang Wei-Gang Yu Zhi-Tao Yin 《World Journal of Clinical Oncology》 2024年第6期667-673,共7页
Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall ... Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall antitumor eff-iciency and reducing conventional chemotherapy side effects.Mesoporous silica nanoparticles(MSNs)have attracted the attention of many researchers due to their remarkable advantages and biosafety.We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value. 展开更多
关键词 Colorectal cancer Treatment Silica nanoparticles Mesoporous silica Mesoporous silica nanoparticles
下载PDF
The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator 被引量:1
2
作者 Constantin Aniculaesei Thanh Ha +24 位作者 Samuel Yoffe Lance Labun Stephen Milton Edward McCary Michael M.Spinks Hernan J.Quevedo Ou Z.Labun Ritwik Sain Andrea Hannasch Rafal Zgadzaj Isabella Pagano Jose A.Franco-Altamirano Martin L.Ringuette Erhart Gaul Scott V.Luedtke Ganesh Tiwari Bernhard Ersfeld Enrico Brunetti Hartmut Ruhl Todd Ditmire Sandra Bruce Michael E.Donovan Michael C.Downer Dino A.Jaroszynski Bjorn Manuel Hegelich 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期15-24,共10页
An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic vel... An intense laser pulse focused onto a plasma can excite nonlinear plasma waves.Under appropriate conditions,electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities.This scheme is called a laser wakefield accelerator.In this work,we present results from a laser wakefield acceleration experiment using a petawatt-class laser to excite the wakefields as well as nanoparticles to assist the injection of electrons into the accelerating phase of the wakefields.We find that a 10-cm-long,nanoparticle-assisted laser wakefield accelerator can generate 340 pC,10±1.86 GeV electron bunches with a 3.4 GeV rms convolved energy spread and a 0.9 mrad rms divergence.It can also produce bunches with lower energies in the 4–6 GeV range. 展开更多
关键词 ACCELERATION nanoparticle CHARGE
下载PDF
Nanoparticle Exsolution on Perovskite Oxides:Insights into Mechanism,Characteristics and Novel Strategies
3
作者 Yo Han Kim Hyeongwon Jeong +6 位作者 Bo‑Ram Won Hyejin Jeon Chan‑ho Park Dayoung Park Yeeun Kim Somi Lee Jae‑ha Myung 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期312-346,共35页
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demon... Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications,including fuel cells,chemical conversion,and batteries.Nanocatalysts demonstrate high activity by expanding the number of active sites,but they also intensify deactivation issues,such as agglomeration and poisoning,simultaneously.Exsolution for bottomup synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials.Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process.Their uniformity and stability,resulting from the socketed structure,play a crucial role in the development of novel nanocatalysts.Recently,tremendous research efforts have been dedicated to further controlling exsolution particles.To effectively address exsolution at a more precise level,understanding the underlying mechanism is essential.This review presents a comprehensive overview of the exsolution mechanism,with a focus on its driving force,processes,properties,and synergetic strategies,as well as new pathways for optimizing nanocatalysts in diverse applications. 展开更多
关键词 Supported nanoparticle EXSOLUTION In situ growth MECHANISM Perovskite oxide CATALYST
下载PDF
Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles
4
作者 Dongmiao Sang Xiaoxi Luo Jinbin Liu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期69-98,共30页
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl... Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation. 展开更多
关键词 Ultrasmall gold nanoparticle Cellular interaction Organ interaction Tumor interaction BIOIMAGING
下载PDF
Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
5
作者 范凤国 段林彤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期589-595,共7页
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom... The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control. 展开更多
关键词 nanoparticle film deformation magnetic properties flexible substrates
下载PDF
Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting
6
作者 Yan Li Jie Han +5 位作者 Weiwei Bao Junjun Zhang Taotao Ai Mameng Yang Chunming Yang Pengfei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期590-599,I0013,共11页
Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen e... Designing efficient and long-lasting non-metal electrocatalysts is an urgent task for addressing the issue of kinetic hysteresis in electrochemical oxidation reactions.The bimetallic hydroxides,catalyzing the oxygen evolution reaction(OER),have significant research potential because hydroxide reconstruction to generate an active phase is a remarkable advantage.Herein,the complete reconstruction of ultrathin CoNi(OH)_(2) nanosheets was achieved by embedding Ag nanoparticles into the hydroxide to induce a spontaneous redox reaction(SRR),forming heterojunction Ag@CoNi(OH)_(2) for bifunctional hydrolysis.Theoretical calculations and in situ Raman and ex situ characterizations revealed that the inductive effect of the Ag cation redistributed the charge to promote phase transformation to highly activate Ag-modified hydroxides.The Co-Ni dual sites in Co/NiOOH serve as novel active sites for optimizing the intermediates,thereby weakening the barrier formed by OOH^*.Ag@CoNi(OH)_(2) required a potential of 1.55 V to drive water splitting at a current density of 10 mA cm^(-2),with nearly 98.6% Faraday efficiency.Through ion induction and triggering of electron regulation in the OER via the synergistic action of the heterogeneous interface and surface reconstruction,this strategic design can overcome the limited capacity of bimetallic hydroxides and bridge the gap between the basic theory and industrialization of water decomposition. 展开更多
关键词 Surface reconstruction Bimetallic hydroxides Ag nanoparticle Operando Raman Overall water splitting
下载PDF
Phonon resonance modulation in weak van der Waals heterostructures:Controlling thermal transport in graphene-silicon nanoparticle systems
7
作者 李毅 刘一浓 胡世谦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期96-102,共7页
The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles inf... The drive for efficient thermal management has intensified with the miniaturization of electronic devices.This study explores the modulation of phonon transport within graphene by introducing silicon nanoparticles influenced by van der Waals forces.Our approach involves the application of non-equilibrium molecular dynamics to assess thermal conductivity while varying the interaction strength,leading to a noteworthy reduction in thermal conductivity.Furthermore,we observe a distinct attenuation in length-dependent behavior within the graphene-nanoparticles system.Our exploration combines wave packet simulations with phonon transmission calculations,aligning with a comprehensive analysis of the phonon transport regime to unveil the underlying physical mechanisms at play.Lastly,we conduct transient molecular dynamics simulations to investigate interfacial thermal conductance between the nanoparticles and the graphene,revealing an enhanced thermal boundary conductance.This research not only contributes to our understanding of phonon transport but also opens a new degree of freedom for utilizing van der Waals nanoparticle-induced resonance,offering promising avenues for the modulation of thermal properties in advanced materials and enhancing their performance in various technological applications. 展开更多
关键词 thermal conductivity molecular dynamics phonon resonance van der Waals interaction graphene-silicon nanoparticle heterostructure
下载PDF
Heating of nanoparticles and their environment by laser radiation and applications
8
作者 Victor K.Pustovalov 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期78-115,共38页
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ... This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles. 展开更多
关键词 nanoparticleS LASER HEATING MODELING Nanothermometry Applications
下载PDF
Green Synthesis of Iron(Ⅱ,Ⅲ)-polyphenol Nanoparticles and Their Adsorption of Malachite Green
9
作者 胡玉 ZHOU Fan +5 位作者 ZHANG Nan PAN Xiaobin LI Shiying ZHANG Dong LI Li 张玲帆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1025-1030,共6页
Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning elec... Three kinds of iron nanoparticles(FeNPs)were prepared via green route based on pomegranate(PG),green tea(GT),and mulberry(ML)extracts under ambient conditions.The obtained materials were characterized by scanning electron microscopy(SEM),transmission electronic microscopy(TEM),X-ray energy-dispersive spectrometer(EDS),X-ray diffraction(XRD),fourier transform infrared spectroscopy(FTIR),and X-ray photoelectron spectroscopy(XPS)techniques.The experimental results show that FeNPs were in the form of amorphous iron(Ⅱ,Ⅲ)-polyphenol complex with different dispersity and morphologies.GT-Fe has the smallest size range of 25-35 nm,PG-Fe has a moderate size-distribution of 30-40 nm,while ML-Fe formed a tuberous net-type with a sheeting structure.PG-Fe displays the highest removal efficiency of 90.2%in 20 min towards cationic dye of malachite green(16.6%by ML-Fe and 69.3%by GT-Fe),which is attributed to its highest polyphenol content,lowest zeta potential,as well as the most Fe^(2+)on the surface of FeNPs.The removal mechanism was mainly induced by electrostatic adsorption based on pH and zeta potential tests. 展开更多
关键词 IRON nanoparticleS POMEGRANATE green tea MULBERRY ADSORPTION
下载PDF
Preparation and characterization of pH-responsive metal-polyphenol structure coated nanoparticles
10
作者 Qile Xia Yan Liang +2 位作者 Ailing Cao Yan Cao Luyun Cai 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1303-1310,共8页
In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phl... In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release. 展开更多
关键词 METAL PHLOROTANNINS nanoparticleS PH-RESPONSIVE CHARACTERIZATION
下载PDF
Experimental investigation of the effects of oil asphaltene content on CO_(2) foam stability in the presence of nanoparticles and sodium dodecyl sulfate
11
作者 SADEGHI Hossein KHAZ'ALI Ali Reza MOHAMMADI Mohsen 《Petroleum Exploration and Development》 SCIE 2024年第1期239-250,共12页
Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechani... Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability. 展开更多
关键词 CO_(2)foam foam stability ASPHALTENE silica nanoparticle sodium dodecyl sulfate(SDS) repulsive forces surface charges Zeta potential
下载PDF
Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
12
作者 李亚涛 刘英光 +3 位作者 李鑫 李亨宣 王志香 张久意 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期78-84,共7页
The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric... The combination of different nanostructures can hinder phonons transmission in a wide frequency range and further reduce the thermal conductivity(TC).This will benefit the improvement and application of thermoelectric conversion,insulating materials and thermal barrier coatings,etc.In this work,the effects of nanopillars and Ge nanoparticles(GNPs)on the thermal transport of Si nanowire(SN)are investigated by nonequilibrium molecular dynamics(NEMD)simulation.By analyzing phonons transport behaviors,it is confirmed that the introduction of nanopillars leads to the occurrence of lowfrequency phonons resonance,and nanoparticles enhance high-frequency phonons interface scattering and localization.The results show that phonons transport in the whole frequency range can be strongly hindered by the simultaneous introduction of nanopillars and nanoparticles.In addition,the effects of system length,temperature,sizes and numbers of nanoparticles on the TC are investigated.Our work provides useful insights into the effective regulation of the TC of nanomaterials. 展开更多
关键词 resonant structure nanoparticleS NANOPILLARS phonon transport thermal conductivity
下载PDF
Fast synthesis of gold nanoparticles by cold atmospheric pressure plasma jet in the presence of Au+ions and a capping agent
13
作者 Tatiana HABIB José Mauricio A.CAIUT Bruno CAILLIER 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期108-115,共8页
Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse... Homogeneous gold nanoparticles were synthesized under atmospheric pressure using a nonthermal helium plasma jet in a single-step process.A current power supply was used to generate the plasma discharge rich in diverse reactive species.These species induce rapid chemical reactions responsible for the reduction of the gold salts upon contact with the liquid solution.In this study,spherical and monodispersed gold nanoparticles were obtained within 5 min of plasma exposure using a solution containing gold(Ⅲ)chloride hydrate(HAuCl_(4))as a precursor and polyvinylpyrrolidone(PVP)as a capping agent to inhibit agglomerations.The formation of these metal nanoparticles was initially perceptible through a visible change in the sample's color,transitioning from light yellow to a red/pink color.This was subsequently corroborated by UVvis spectroscopy,which revealed an optical absorption in the 520-550 nm range for Au NPs,corresponding to the surface plasmon resonance(SPR)band.An investigation into the impact of various parameters,including plasma discharge duration,precursor and capping agent concentrations,was carried out to optimize conditions for the formation of well-separated,spherical gold nanoparticles.Dynamic light scattering(DLS)was used to measure the size of these nanoparticles,transmission electron microscopy(TEM)was used to observe their morphology and X-ray diffraction(XRD)was also employed to determine their crystallographic structure.The results confirm that homogeneous spherical gold nanoparticles with an average diameter of 13 nm can be easily synthesized through a rapid,straightforward,and environmentally friendly approach utilizing a helium atmospheric pressure plasma. 展开更多
关键词 gold nanoparticles NON-THERMAL plasma jet HELIUM DBD
下载PDF
Hemorrhagic cystitis in gastric cancer after nanoparticle albuminbound paclitaxel:A case report
14
作者 Xin-Jie Zhang Jian Lou 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期1084-1090,共7页
BACKGROUND The advanced first-line regimen for advanced gastric cancer is based on a combination of fluoropyrimidine and platinum and/or paclitaxel(PTX),forming a two-or three-drug regimen.Compared to conventional PTX... BACKGROUND The advanced first-line regimen for advanced gastric cancer is based on a combination of fluoropyrimidine and platinum and/or paclitaxel(PTX),forming a two-or three-drug regimen.Compared to conventional PTX,nanoparticle albumin-bound PTX(Nab-PTX)has better therapeutic effects and fewer adverse effects reported in studies.Nab-PTX is a great option for patients presenting with advanced gastric cancer.Herein,we highlight an adverse event(hemorrhagic cystitis)of Nab-PTX in advanced gastric cancer.CASE SUMMARY A 55-year-old male was diagnosed with lymph node metastasis after a laparo-scopic-assisted radical gastrectomy for gastric cancer that was treated by Nab-PTX and S-1(AS).On the 15th day after treatment with AS,he was diagnosed with hemorrhagic cystitis.CONCLUSION Physicians should be aware that hemorrhagic cystitis is a potential adverse event associated with Nab-PTX treatment. 展开更多
关键词 nanoparticle albumin-bound paclitaxel Hemorrhagic cystitis Gastric cancer Adverse event Case report
下载PDF
Study on Chaotic Characteristics of the Friction Process between High Hardness Alloy Steel and Cemented Carbide under C60 Nanoparticle Fluid Lubrication
15
作者 Jingshan Huang Bin Yao +1 位作者 Qixin Lan Zhirong Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期525-550,共26页
Friction and wear phenomenon is a complex nonlinear system,and it is also a significant problem in the process of metal cutting.In order to systematically analyze the friction and wear process of tool material-workpie... Friction and wear phenomenon is a complex nonlinear system,and it is also a significant problem in the process of metal cutting.In order to systematically analyze the friction and wear process of tool material-workpiece material friction pair in the cutting process of high hardness alloy steel under different lubrication conditions,the chaotic characteristics of friction process between high hardness alloy steel and cemented carbide under the lubrication C60 nano-particles fluid are studied based on the chaos theory.Firstly,the friction and wear experiments of the friction pair between high hardness alloy steel and cemented carbide tool are carried out based on the ring-block friction and wear tester,and the results of friction force signal in time domain and wear width are obtained.Then,the friction signals in time domain are processed and transformed based on phase space reconstruction and recurrence plot theory,and the recurrence plots of different experimental groups under different lubrication conditions are generated.The evolution law of recurrence plot is further observed and studied,and the recursive quantitative index is analyzed.Finally,the cutting experiments of tool wear are carried out.The results show that the proposed method can intuitively and accurately reveal the wear evolution process and the wear feature identification law of the tool material-high hardness alloy steel pair under different lubrication conditions.Meanwhile,it is found that when the concentration of C60 nanoparticles is 200∼300 ppm,the stability of the friction pair system is best.The proposed method can provide a strategy for wear prediction in cutting process,and provide a theoretical basis and technical support for antifriction lubrication methods in practical cutting applications. 展开更多
关键词 C60 nanoparticles recurrence plot FRICTION STABILITY
下载PDF
The Influence of Tartaric Acid in the Silver Nanoparticle Synthesis Using Response Surface Methodology
16
作者 Yatim Lailun Ni’mah Afaf Baktir +1 位作者 Dewi Santosaningsih Suprapto Suprapto 《Journal of Renewable Materials》 EI CAS 2024年第2期245-258,共14页
Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric... Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric acid is an important factor that protects the silver surface and reduces potential cytotoxicity problems.These attributes are critical for assessing the compatibility of AgNPs with biological systems and making them suitable for drug delivery applications.The aim of this research is to conduct a comprehensive study of the effect of tartaric acid concentration,sonication time and temperature on the formation of silver nanoparticles.Using Response Surface Methodology(RSM)with Face-Centered Central Composite Design(FCCD),the optimization process identifies the most favorable synthesis conditions.UV-Vis spectrum regression analysis shows that AgNPs stabilized with tartaric acid are more stable than AgNPs without tartaric acid.This highlights the increased stability that tartaric acid provides in AgNP ssssynthesis.Particle size distribution analysis showed a multimodal distribution for AgNPs with tartaric acid and showed the smallest size peak with an average size of 20.53 nm.The second peak with increasing intensity shows a dominant average size of 108.8 nm accompanied by one standard deviation of 4.225 nm and a zeta potential of−11.08 mV.In contrast,AgNPs synthesized with polyvinylpyrrolidone(PVP)showed a unimodal particle distribution with an average particle size of 81.62 nm and a zeta potential of−2.96 mV.The more negative zeta potential of AgNP-tartaric acid indicates its increased stability.Evaluation of antibacterial activity showed that AgNPs stabilized with tartaric acid showed better performance against E.coli and B.subtilis bacteria compared with AgNPs-PVP.In summary,this study highlights the potential of tartaric acid in AgNP synthesis and suggests an avenue for the development of stable AgNPs with versatile applications. 展开更多
关键词 Tartaric acid silver nanoparticle polyvinyl pyrrolidone response surface methodology
下载PDF
Probing the Nucleation and Growth Kinetics of Bismuth Nanoparticles via In-situ Transmission Electron Microscopy
17
作者 王浪 李超凡 +3 位作者 RAN Maojin YUAN Manman 胡执一 LI Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期877-887,共11页
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme... The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles. 展开更多
关键词 bismuth nanoparticles crystal growth transmission electron microscopy in-situ electron microscopy
下载PDF
Functionalized lipid nanoparticles modulate the blood-brain barrier and eliminate α-synuclein to repair dopamine neurons
18
作者 Xiaomei Wu Renxiang Yuan +4 位作者 Yichong Xu Kai Wang Hong Yuan Tingting Meng Fuqiang Hu 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期120-135,共16页
The challenge in the clinical treatment of Parkinson's disease lies in the lack of disease-modifying therapies that can halt or slow down the progression. Peptide drugs, such as exenatide (Exe), with potential dis... The challenge in the clinical treatment of Parkinson's disease lies in the lack of disease-modifying therapies that can halt or slow down the progression. Peptide drugs, such as exenatide (Exe), with potential disease-modifying efficacy, have difficulty in crossing the blood-brain barrier (BBB) due to their large molecular weight. Herein, we fabricate multi-functionalized lipid nanoparticles (LNP) Lpc-BoSA/CSO with BBB targeting, permeability-increasing and responsive release functions. Borneol is chemically bonded with stearic acid and, as one of the components of Lpc-BoSA/CSO, is used to increase BBB permeability. Immunofluorescence results of brain tissue of 15-month-old C57BL/6 mice show that Lpc-BoSA/CSO disperses across the BBB into brain parenchyma, and the amount is 4.21 times greater than that of conventional LNP. Motor symptoms of mice in Lpc-BoSA/CSO-Exe group are significantly improved, and the content of dopamine is 1.85 times (substantia nigra compacta) and 1.49 times (striatum) that of PD mice. α-Synuclein expression and Lewy bodies deposition are reduced to 51.85% and 44.72% of PD mice, respectively. Immunohistochemical mechanism studies show AKT expression in Lpc-BoSA/CSO-Exe is 4.23 times that of PD mice and GSK-3β expression is reduced to 18.41%. Lpc-BoSA/CSO-Exe could reduce the production of α-synuclein and Lewy bodies through AKT/GSK-3β pathway, and effectively prevent the progressive deterioration of Parkinson's disease. In summary, Lpc-BoSA/CSO-Exe increases the entry of exenatide into brain and promotes its clinical application for Parkinson's disease therapy. 展开更多
关键词 Blood-brain barrier Lipid nanoparticles Brain delivery facilitation α-Symuclein Parkinson's disease
下载PDF
Cu,N codoped carbon nanosheets encapsulating ultrasmall Cu nanoparticles for enhancing selective 1,2-propanediol oxidation
19
作者 Yonghai Feng Min Yu +2 位作者 Minjia Meng Lei Liu Dewei Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期27-35,共9页
In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited... In the selective oxidation of biomass-based 1,2-propanediol(PDO)with oxygen as the terminal oxidant,it is challenging to improve the lactic acid(LA)selectivity for nonnoble metal nanoparticles(NPs)due to their limited oxygen reduction rate and easy C-C cleavage.Given the high economic feasibility of nonnoble metals,i.e.,Cu,in this work,copper and nitrogen codoped porous carbon nanosheets encapsulating ultrafine Cu nanoparticles(Cu@Cu-N-C)were developed to realize highly selective of PDO oxidation to LA.The carbon-encapsulated ultrasmall Cu^(0)NPs in Cu@Cu-N-C have high PDO dehydrogenation activity while N-coordinated Cu(Cu-N)sites are responsible for the high oxygen reduction efficacy.Therefore,the performance of catalytic PDO conversion to LA is optimized by a proposed pathway of PDO→hydroxylacetone→lactaldehyde→LA.Specifically,the enhanced LA selectivity is 88.5%,and the PDO conversion is up to 75.1%in an O_(2)-pressurized reaction system(1.0 MPa O_(2)),superior to other Cu-based catalysts,while in a milder nonpressurized system(O_(2)flow rate of 100 mL min-1),a remarkable LA selectivity(94.2%)is obtained with 39.8%PDO conversion,2.2 times higher than that of supported Au nanoparticles(1%Au/C).Moreover,carbon encapsulation offers Cu@Cu-N-C with strong leaching resistance for better recycling. 展开更多
关键词 Selective oxidation Copper and nitrogen doped carbon 1 2-PROPANEDIOL Ultrasmall Cu nanoparticles Lactic acid
下载PDF
Nanoparticles for the treatment of spinal cord injury
20
作者 Qiwei Yang Di Lu +8 位作者 Jiuping Wu Fuming Liang Huayi Wang Junjie Yang Ganggang Zhang Chen Wang Yanlian Yang Ling Zhu Xinzhi Sun 《Neural Regeneration Research》 SCIE CAS 2025年第6期1665-1680,共16页
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s... Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development. 展开更多
关键词 ANTIOXIDANTS axon regeneration biocompatible materials drug carriers nanoparticleS nerve regeneration neuroinflammatory diseases NEUROPROTECTION spinal cord injury stem cells
下载PDF
上一页 1 2 246 下一页 到第
使用帮助 返回顶部