期刊文献+
共找到310篇文章
< 1 2 16 >
每页显示 20 50 100
Near-field radiative heat transfer between nanoporous GaN films
1
作者 韩晓政 张纪红 +2 位作者 刘皓佗 吴小虎 冷惠文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期109-120,共12页
Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path... Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation. 展开更多
关键词 near-field radiative heat transfer nanoporous GaN film surface phonon polaritons surface plasmon polaritons
下载PDF
Self-Supporting Nanoporous Copper Film with High Porosity and Broadband Light Absorption for Efficient Solar Steam Generation 被引量:1
2
作者 Bin Yu Yan Wang +1 位作者 Ying Zhang Zhonghua Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期57-71,共15页
Solar steam generation(SSG)is a potential technology for freshwater production,which is expected to address the global water shortage problem.Some noble metals with good photothermal conversion performance have receiv... Solar steam generation(SSG)is a potential technology for freshwater production,which is expected to address the global water shortage problem.Some noble metals with good photothermal conversion performance have received wide concerns in SSG,while high cost limits their practical applications for water purification.Herein,a self-supporting nanoporous copper(NP-Cu)film was fabricated by one-step dealloying of a specially designed Al_(98)Cu_(2)precursor with a dilute solid solution structure.In-situ and ex-situ characterizations were performed to reveal the phase and microstructure evolutions during dealloying.The NP-Cu film shows a unique three-dimensional bicontinuous ligament-channel structure with high porosity(94.8%),multi scale-channels and nanoscale ligaments(24.2±4.4nm),leading to its strong broadband absorption over the 200–2500 nm wavelength More importantly,the NP-Cu film exhibits excellent SSG performance with high evaporation rate,superior efficiency and good stability.The strong desalination ability of NP-Cu also manifests its potential applications in seawater desalination.The related mechanism has been rationalized based upon the nanoporous network,localized surface plasmon resonance effect and hydrophilicity. 展开更多
关键词 Solar steam generation nanoporous copper Broadband solar absorption Localized surface plasmon resonance Seawater desalination Dealloying
下载PDF
Microstructure Control of Nanoporous Silica Thin Film Prepared by Sol-gel Process 被引量:4
3
作者 Yiqun XIAO Jun SHEN Zhiyong XIE Bin ZHOU Guangming WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期504-508,共5页
Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructur... Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructure and the particle size distribution of the sols. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer were used to characterize the surface microstructure and the optical properties of the silica films. Stability of the sols during long-term storage was investigated. Moreover,the dispersion relation of the optical constants of the silica films, and the control of the microstructure and properties of the films by changing the catalysis conditions during sol-gel process were also discussed. 展开更多
关键词 SOL-GEL nanoporous MICROSTRUCTURE Optical constants Silica Thin Film
下载PDF
Surface‑Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High‑Performance Aqueous Zinc‑Ion Battery 被引量:4
4
作者 Huan Meng Qing Ran +8 位作者 Tian-Yi Dai Hang Shi Shu-Pei Zeng Yong-Fu Zhu Zi Wen Wei Zhang Xing-You Lang Wei-Tao Zheng Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期58-71,共14页
Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large vol... Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h. 展开更多
关键词 nanoporous metal Zinc-based alloy anode Aqueous zinc-ion batteries Surface alloying
下载PDF
Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li-Se battery 被引量:4
5
作者 Chao Li Yingying Wang +7 位作者 Hongyan Li Jing Liu Jianping Song Luca Fusaro Zhi-Yi Hu Yanxin Chen Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期396-404,I0009,共10页
Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving th... Lithium-selenium(Li-Se)battery has attracted growing attention.Nevertheless,its practical application is still impeded by the shuttle effect of the formed polyselenides.Herein,we report in-situ hydrothermal weaving the three-dimensional(3 D)highly conductive hierarchically interconnected nanoporous web by threading microporous metal organic framework MIL-68(Al)crystals onto multi-walled carbon nanotubes(MWCNTs).Such 3 D hierarchically nanoporous web(3 D MIL-68(Al)@MWCNTs web)with a very high surface area,a large amount of micropores,electrical conductivity and elasticity strongly traps the soluble polyselenides during the electrochemical reaction and significantly facilitates lithium ion diffusion and electron transportation.Molecular dynamic calculation confirmed the strong affinity of MIL-68(Al)for the adsorption of polyselenides,quite suitable for Li-Se battery.Their hexahedral channels(1.56 nm)are more efficient for the confinement of polyselenides and for the diffusion of electrolytes compared to their smaller triangular channels(0.63 nm).All these excellent characteristics of 3 D MIL-68(Al)@MWCNTs web with suitable confinement of a large amount of selenium and the conductive linkage between MIL-68(Al)host by MWCNTs result in a high capacity of 453 m Ah/g at 0.2 C with 99.5%coulombic efficiency after 200 cycles with significantly improved cycle stability and rate performance.The 3 D MIL-68(Al)@MWCNTs web presents a good performance in Li-Se battery in term of the specific capacity and cycling stability and also in terms of rate performance compared with all the metal-organic framework(MOF)based or MOF derived porous carbons used in Li-Se battery. 展开更多
关键词 Lithium selenium battery Selenium confinement 3D hierarchically nanoporous web Metal-organic framework(MOF) Multi walled carbon nanotubes
下载PDF
Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes 被引量:3
6
作者 Hamid Heydari Seyyed Ebrahim Moosavifard +1 位作者 Mohammad Shahraki Saeed Elyasi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期762-767,共6页
In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its mater... In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein, we report a simple strategy for high-performance supercapacitors by building pseudocapacitive CuS nanospheres with nanoporous structures, nanosized walls(<10 nm) and relatively large specific surface area of 65 m;/g. This electrode demonstrates excellent electrochemical performance including a maximum specific capacitance of 814 F/g at 1 A/g, significant rate capability of 42% capacitance retention at an ultrafast rate of 50 A/g, and outstanding long-term cycling stability at various current densities. The remarkable electrochemical performance of as-prepared nanoporous CuS nanospheres electrode has been attributed to its unique structures that plays a key role in providing short ion and electron diffusion pathways, facilitated ion transport and more active sites for electrochemical reactions. This work sheds a new light on the metal sulfides design philosophy, and demonstrates that nanoporous CuS nanospheres electrode is a promising candidate for application in high-performance supercapacitors. 展开更多
关键词 SUPERCAPACITOR nanoporous CUS NANOSPHERES
下载PDF
Novel nanoporous palladium catalyst for electroreduction of hydrogen peroxide 被引量:2
7
作者 YI Qingfeng NIU Fengjuan 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期332-336,共5页
Titanium-supported nanoporous palladium catalyst (Pd/Ti) was prepared by a hydrothermal method using PdC12 as a precursor, ethylenediamine tetraacetic acid (EDTA) as a ligand, and formaldehyde as a reduction agent... Titanium-supported nanoporous palladium catalyst (Pd/Ti) was prepared by a hydrothermal method using PdC12 as a precursor, ethylenediamine tetraacetic acid (EDTA) as a ligand, and formaldehyde as a reduction agent. Complex Pd-EDTA^2- is favorable for the formation of Pd particles with nanoscale sizes. The electroactivity of the Pd/Ti catalyst towards the electroreduction of hydrogen peroxide in 1 mol/L NaOH solution was evaluated by voltammetric techniques. Both linear scan voltammetric and chronoamperometric data present significantly large steady-state reduction current density of the hydrogen peroxide electroreduction on the prepared Pd/Ti catalyst. The results show that the prepared Pd/Ti catalyst is an effective electrocatalyst for the electroreduction of hydrogen peroxide in alkaline media. 展开更多
关键词 ELECTROCATALYSIS nanoporous materials PALLADIUM hydrogen peroxide fuel cells
下载PDF
The Self-assembling and Application of Inorganic Anti-bacterial Material Made of Natural Nanoporous Carrier 被引量:2
8
作者 孙春宝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第6期771-774,共4页
The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solut... The inorganic antimicrobial material was inhibited to the microbes with the added metal ion,Zn.The primary wet product carrying 5%-10% zinc ion was generated under the following conditions:temperature was 95 ℃,solution zinc concentration was 1.2-2.0 mol/L,and the ratio of Zn solution to zeolite weight was 5:1.The final stable product was manufactured after baking in an oven for 1-3 h at the temperature of 500-900 ℃.The baked material was tested for its disinfection effectiveness and coloring effect when mixed with paint coating.Based on the final batch of tests,the zinc content of this anti-microbial product was further optimized. 展开更多
关键词 inorganic antimicrobial nanoporous material antibacterial coating ZEOLITE SELF-ASSEMBLING
下载PDF
MULTIAXIAL BEHAVIOR OF NANOPOROUS SINGLE CRYSTAL COPPER:A MOLECULAR DYNAMICS STUDY 被引量:2
9
作者 Kejie Zhao Liangliang Fan Changqing Chen 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第6期650-656,共7页
The stress-strain behavior and copper are studied by the molecular dynamics incipient yield surface of nanoporous single crystal (MD) method. The problem is modeled by a periodic unit cell subject to multi-axial loa... The stress-strain behavior and copper are studied by the molecular dynamics incipient yield surface of nanoporous single crystal (MD) method. The problem is modeled by a periodic unit cell subject to multi-axial loading. The loading induced defect evolution is explored. The incipient yield surfaces are found to be tension-compression asymmetric. For a given void volume fraction, apparent size effects in the yield surface are predicted: the smaller behaves stronger. The evolution pattern of defects (i.e., dislocation and stacking faults) is insensitive to the model size and void volume fraction. However, it is loading path dependent. Squared prismatic dislocation loops dominate the incipient yielding under hydrostatic tension while stacking-faults are the primary defects for hydrostatic compression and uniaxial tension/compression. 展开更多
关键词 molecular dynamics incipient yield surface size effect dislocations nanoporous single crystal copper
下载PDF
Preparation, structural and electrical properties of zinc oxide grown on silicon nanoporous pillar array 被引量:2
10
作者 姚志涛 孙新瑞 +1 位作者 许海军 李新建 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第10期3108-3113,共6页
Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found ... Polycrystalline thick film of zinc oxide (ZnO) is grown on a unique silicon substrate with a hierarchical structure, silicon nanoporous pillar array (Si-NPA), by using a vapour phase transport method. It is found that as-grown ZnO film is composed of closely packed ZnO crystallites with an average size of -10 μm. The film resistivity of ZnO/SiNPA is measured to be -8.9Ωcm by the standard four probe method. The lengthwise Ⅰ-Ⅴ curve of ZnO/Si-NPA heterostructure is measured. Theoretical analysis shows that the carrier transport across ZnO/Si-NPA heterojunction is dominated by two mechanisms, i.e. a thermionic process at high voltages and a quantum tunnelling process at low voltages. 展开更多
关键词 silicon nanoporous pillar array (Si-NPA) ZnO/Si-NPA heterostructure thermionic process
下载PDF
High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture 被引量:2
11
作者 Minman Tong Youshi Lan +1 位作者 Qingyuan Yang Chongli Zhong 《Green Energy & Environment》 SCIE 2018年第2期107-119,共13页
The globally increasing concentrations of greenhouse gases in atmosphere after combustion of coal-or petroleum-based fuels give rise to tremendous interest in searching for porous materials to efficiently capture carb... The globally increasing concentrations of greenhouse gases in atmosphere after combustion of coal-or petroleum-based fuels give rise to tremendous interest in searching for porous materials to efficiently capture carbon dioxide(CO_2) and store methane(CH4), where the latter is a kind of clean energy source with abundant reserves and lower CO_2 emission. Hundreds of thousands of porous materials can be enrolled on the candidate list, but how to quickly identify the really promising ones, or even evolve materials(namely, rational design high-performing candidates) based on the large database of present porous materials? In this context, high-throughput computational techniques, which have emerged in the past few years as powerful tools, make the targets of fast evaluation of adsorbents and evolving materials for CO_2 capture and CH_4 storage feasible. This review provides an overview of the recent computational efforts on such related topics and discusses the further development in this field. 展开更多
关键词 High-throughput computation Screening and design nanoporous materials CO2 capture CH4 storage
下载PDF
Fabrication of nanoporous Ni and NiO via a dealloying strategy for water oxidation catalysis 被引量:1
12
作者 Xiangrong Ren Yiyue Zhai +2 位作者 Qi Zhou Junqing Yan Shengzhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期125-134,共10页
Nickel oxides and(oxy)hydroxides are promising replacements for noble-metal-based catalysts owing to their high activity and good long-term stability for the oxygen evolution reaction(OER). Herein, we developed nanopo... Nickel oxides and(oxy)hydroxides are promising replacements for noble-metal-based catalysts owing to their high activity and good long-term stability for the oxygen evolution reaction(OER). Herein, we developed nanoporous Ni by a method of combined rapid solidification and chemical dealloying. Subsequently,nanoporous Ni O was obtained via heating treatment, the macropore and skeleton sizes of the NiO originated from Ni10Al90 alloy are 100–300 nm and 80–200 nm, respectively. Benefiting from the multi-stage nanoporous structure and high specific surface area, the nanoporous NiO demonstrates an outstanding OER, reaching 20 mA cm-2 at an overpotential of 356 mV in 1 M KOH. The corresponding Tafel slope and apparent activation energy are measured to be 76.73 mV dec-1 and 29.0 kJ mol-1, respectively. Moreover,kinetic analysis indicates that the Ni O catalyst shows pseudocapacitive characteristics, and the improved current is attributed to the high-rate pseudocapacitive behavior that efficiently maintains increased nickel redox cycling to accelerate the reaction rates. After 1000 cycles of voltammetry, the overpotential of the NiO decreases by 22 mV(j = 10 mA cm-2), exhibiting excellent stability and durability. 展开更多
关键词 Rapid solidification DEALLOYING nanoporous Ni ELECTROCATALYST OER
下载PDF
Point-defect engineering of nanoporous CuBi_(2)O_(4) photocathode via rapid thermal processing for enhanced photoelectrochemical activity 被引量:1
13
作者 Li Qu Runfa Tan +5 位作者 Arumugam Sivanantham Min Je Kang Yoo Jae Jeong Dong Hyun Seo Sungkyu Kim In Sun Cho 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期201-209,I0007,共10页
Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized ... Engineering point defects such as metal and oxygen vacancies play a crucial role in manipulating the electrical,optical,and catalytic properties of oxide semiconductors for solar water splitting.Herein,we synthesized nanoporous CuBi_(2)O_(4)(np-CBO)photocathodes and engineered their surface point defects via rapid thermal processing(RTP)in controlled atmospheres(O_(2),N_(2),and vacuum).We found that the O_(2)-RTP treatment of np-CBO increased the charge carrier density effectively without hampering the nanoporous morphology,which was attributed to the formation of copper vacancies(VCu).Further analyses revealed that the amounts of oxygen vacancies(Vo)and Cu^(1+)were reduced simultaneously,and the relative electrochemical active surface area increased after the O_(2)-RTP treatment.Notably,the point defects(VC_(u),Cu^(1+),and Vo)regulated np-CBO achieved a superb water-splitting photocurrent density of-1.81 m A cm^(-2) under simulated sunlight illumination,which is attributed to the enhanced charge transport and transfer properties resulting from the regulated surface point defects.Finally,the reversibility of the formation of the point defects was checked by sequential RTP treatments(O_(2)-N_(2)-O_(2)-N_(2)),demonstrating the strong dependence of photocurrent response on the RTP cycles.Conclusively,the surface point defect engineering via RTP treatment in a controlled atmosphere is a rapid and facile strategy to promote charge transport and transfer properties of photoelectrodes for efficient solar water-splitting. 展开更多
关键词 nanoporous Copper bismuth oxide Rapid thermal processing Copper vacancy Charge transport
下载PDF
Nanoconfinement effect of nanoporous carbon electrodes for ionic liquid-based aluminum metal anode 被引量:1
14
作者 Juhee Yoon Seongbak Moon +3 位作者 Son Ha Hyung-Kyu Lim Hyoung-Joon Jin Young Soo Yun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期121-127,I0005,共8页
Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deli... Rechargeable aluminum batteries(RABs),which use earth-abundant and high-volumetric-capacity metal anodes(8040 m Ah cm-3),have great potential as next-generation power sources because they use cheaper resources to deliver higher energies,compared to current lithium ion batteries.However,the mechanism of charge delivery in the newly developed,ionic liquid-based electrolytic system for RABs differs from that in conventional organic electrolytes.Thus,targeted research efforts are required to address the large overpotentials and cycling decay encountered in the ionic liquid-based electrolytic system.In this study,a nanoporous carbon(NPC)electrode with well-developed nanopores is used to develop a high-performance aluminum anode.The negatively charged nanopores can provide quenched dynamics of electrolyte molecules in the aluminum deposition process,resulting in an increased collision rate.The fast chemical equilibrium of anionic species induced by the facilitated anionic collisions leads to more favorable reduction reactions that form aluminum metals.The nanoconfinement effect causes separated nucleation and growth of aluminum nanoparticles in the multiple confined nanopores,leading to higher coulombic efficiencies and more stable cycling performance compared with macroporous carbon black and 2D stainless steel electrodes. 展开更多
关键词 Nanoconfinement effect nanoporous carbon Ionic liquid electrolyte Metal anode Aluminum batteries Multivalent batteries
下载PDF
Symmetrizing cathode-anode response to speed up charging of nanoporous supercapacitors 被引量:1
15
作者 Tangming Mo Liang Zeng +2 位作者 Zhenxiang Wang Svyatoslav Kondrat Guang Feng 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期95-104,共10页
Asymmetric behaviors of capacitance and charging dynamics in the cathode and anode are general for nanoporous supercapacitors.Understanding this behavior is essential for the optimal design of supercapacitors.Herein,w... Asymmetric behaviors of capacitance and charging dynamics in the cathode and anode are general for nanoporous supercapacitors.Understanding this behavior is essential for the optimal design of supercapacitors.Herein,we perform constant-potential molecular dynamics simulations to reveal asymmetric features of porous supercapacitors and their effects on capacitance and charging dynamics.Our simulations show that,counterintuitively,charging dynamics can be fast in pores providing slow ion diffusion and vice versa.Unlike electrodes with singlesize pores,multi-pore electrodes show overcharging and accelerated co-ion desorption,which can be attributed to the subtle interplay between the dynamics and charging mechanisms.We find that capacitance and charging dynamics correlate with how the ions respond to an applied cell voltage in the cathode and anode.We demonstrate that symmetrizing this response can help boost power density,which may find practical applications in supercapacitor optimization. 展开更多
关键词 nanoporous carbon Charging dynamics Charge storage mechanism OVERFILLING OVERCHARGING
下载PDF
Dynamic surface restructuring of nanoporous Cu_(2-x)Se for efficient CO_(2) electroreduction into methanol 被引量:1
16
作者 Xin Lin Xunlin Liu +5 位作者 Yang Zhao Jiao Lan Kang Jiang Zhixiao Liu Feng Xie Yongwen Tan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期514-520,I0014,共8页
The nanoporous Cu_(2-x)Se with Cu(Se-5%)surface catalysts were prepared through in situ dynamic restructuring strategy during the electrochemical process,which achieves highly selective electrochemical CO_(2) reductio... The nanoporous Cu_(2-x)Se with Cu(Se-5%)surface catalysts were prepared through in situ dynamic restructuring strategy during the electrochemical process,which achieves highly selective electrochemical CO_(2) reduction to methanol.In situ and quasi-operando spectroscopic results provide a deep insight into the catalytic active centres of reconstructed heterogeneous catalysts for CO_(2) electroreduction. 展开更多
关键词 Surface restructuring nanoporous Cu_(2-x)Se Carbon dioxide reduction METHANOL
下载PDF
Temperature-Dependent Photoluminescence from GaN/Si Nanoporous Pillar Array 被引量:1
17
作者 王小波 李勇 +1 位作者 闫玲玲 李新建 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第5期142-145,共4页
A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of Ga... A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of GaN/Si- NPA is measured and the PL mechanism is analyzed. It is found that the PL spectrum is basically composed of two narrow ultraviolet peaks and a broad blue peak, corresponding to the near band-edge emission of GaN and its phonon replicas, and the emission from Si-NPA. No GaN defect-related PL is observed in the as-prepared GaN/Si-NPA. Our experiments prove that Si-NPA might be an ideal substrate for preparing high-quality Si-based GaN nanomaterials or nanodeviees. 展开更多
关键词 GAN Temperature-Dependent Photoluminescence from GaN/Si nanoporous Pillar Array NPA SI
下载PDF
Dense copper azide synthesized by in-situ reaction of assembled nanoporous copper microspheres and its initiation performance 被引量:1
18
作者 Xing-yu Wu Ming-yu Li +1 位作者 Qing-xuan Zeng Qing-xia Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1065-1072,共8页
Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using ... Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using polystyrene(PS)as templates.The copper shells thickness of NPC was controlled by adjusting the PS loading amount.The effects of copper shell on the morphology,structure and density of copper azide were investigated.The conversion increased from 87.12%to 95.31%when copper shell thickness decrease from 100 to 50 nm.Meanwhile,the density of copper azide prepared by 529 nm NPC for 24 h was up to 2.38 g/cm^(3).The hollow structure of this NPC was filled by swelling of copper azide which guaranteed enough filling volume for keeping the same shape as well as improving the charge density.Moreover,HNS-IV explosive was successfully initiated by copper azide with minimum charge thickness of 0.55 mm,showing that copper azide prepared has excellent initiation performance,which has more advantages in the application of miniaturized explosive systems. 展开更多
关键词 nanoporous copper Electroless plating In-situ reaction Copper azide
下载PDF
Fabrication of high-strength duplex nanoporous Cu by dealloying a dual-phase Mg-Cu precursor alloy 被引量:1
19
作者 Si-Young Lee Soo-Min Baek +5 位作者 Eun-Ji Gwak Na-Ri Kang Ju-Young Kim Su-Hyeon Kim Jung Gu Lee Sung Soo Park 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期910-916,共7页
Duplex nanoporous Cu was successfully fabricated by dealloying a dual-phase Mg-Cu precursor alloy consisting of intermetallic Mg2Cu and MgCu2.The duplex nanoporous Cu with embedded nanoporous struts exhibited highly e... Duplex nanoporous Cu was successfully fabricated by dealloying a dual-phase Mg-Cu precursor alloy consisting of intermetallic Mg2Cu and MgCu2.The duplex nanoporous Cu with embedded nanoporous struts exhibited highly enhanced strength compared to the typical monolithic nanoporous Cu under both compressive and flexural test conditions at room temperature;the duplex np-Cu sample exhibited a 12 times higher compressive strength and a 40 times greater flexural strength than the monolithic np-Cu sample.Factors responsible for the strength enhancement in the duplex nanoporous Cu are discussed. 展开更多
关键词 Mg-Cu alloy nanoporous Cu DEALLOYING Duplex structure Strength
下载PDF
Preparation of Nanoporous Thermal Insulating Materials and Their Application as Ladle Linings 被引量:1
20
作者 YU Jingkun HAN Lu 《China's Refractories》 CAS 2014年第4期13-15,共3页
The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was... The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was discussed by the simulation method,and the effect of its application as ladle lining was investigated.The results show that the thermal conductivity of the nanoporous thermal insulating material prepared in composition of fumed silica: SiC powder: glass fiber =75: 20:5 (in mass) is 0.023 W · m^-1 · K^-1 at 1 000 ℃,the appropriate thickness of the nanoporous thermal insulating material lined in ladle is ≤ 5 mm and the average temperature of the ladle outside surface when lined with the nanoporous thermal insulating material is 95 ℃ lower than that with the ordinary thermal insulating material. 展开更多
关键词 fumed silica glass fiber nanoporous thermal insulating material thermal conductivity ladle lining
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部