期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Interaction between Cu^(2+) and different types of surface-modified nanoscale zero-valent iron during their transport in porous media 被引量:3
1
作者 Haoran Dong Guangming Zeng +5 位作者 Chang Zhang Jie Liang Kito Ahmad Piao Xu Xiaoxiao He Mingyong Lai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期180-188,共9页
This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, coll... This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect. 展开更多
关键词 Copper ion Colloidal stability Co-transport nanoscale zero valent iron Surface modification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部