Ammonia is one of the most important chemical raw materials in both manufacture and life of human.Traditionally Haber-Bosch method for ammonia synthesis involves high temperature and high pressure conditions,leading t...Ammonia is one of the most important chemical raw materials in both manufacture and life of human.Traditionally Haber-Bosch method for ammonia synthesis involves high temperature and high pressure conditions,leading to significant energy consumption and environmental pollution.Non-thermal plasma(NTP) is a promising alternative approach to ammonia synthesis at low temperature and atmospheric pressure.In this study,the synergistic effect of nanosecond pulsed dielectric barrier discharge(np-DBD) and Ni-MOF-74 catalyst was investigated in ammonia synthesis by utilizing nitrogen and hydrogen as feedstock.The results demonstrated that the plasma catalytic-synthesis process parameters play a crucial role in the synthesis process of ammonia.The highest ammonia synthesis rate of 5145.16 μmol·g^(-1)·h^(-1)with an energy efficiency of 1.27 g·kWh^(-1)was observed in the presence of the Ni-MOF-74 catalyst,which was3.7 times higher than that without Ni-MOF-74 catalyst.The synergistic effect of Ni-MOF-74catalyst and nanosecond pulsed plasma was explored by in-situ plasma discharge diagnostics.展开更多
Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas...Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short du...BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.展开更多
Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison betwee...Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.展开更多
Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). Th...Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). The main specific features of fs-PRLIBS are that a lower plasma temperature leads to a low level of continuum and no species are detected from the ambient gas. Furthermore, signals obtained by fs-PRLIBS show a higher stability than those of ns-PRLIBS. However, more elements are detected in the ns-PRLIBS spectra.展开更多
An application of magnetic field to the nanosecond pulse corona discharge is investigated. A cylinder reactor with different corona electrodes is set up for experimental study. A magnetic field with its direction perp...An application of magnetic field to the nanosecond pulse corona discharge is investigated. A cylinder reactor with different corona electrodes is set up for experimental study. A magnetic field with its direction perpendicular to the corona discharge is applied. Different discharge images are taken under single nanosecond pulse with a high sensitive UV-visible light imagine recorder. Experimental results show that with a cross magnetic field the nanosecond corona discharge both generates paths and develops homogeneously in space more than that without the magnetic field. The results may lead to a possibility to apply a cross magnetic field on nanosecond pulse corona discharge for getting higher desulfurization efficiency.展开更多
Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a fl...Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.展开更多
Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and s...Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and spectrum diagnosis are presented. It is shown that the DBD possesses a large discharge current and an intense optical emission from the nitrogen second positive system below 400 nm. The gas temperature remains very close to room temperature regardless of pulse polarity. Luminous photographs with a short exposure time down to 2 ns indicate that no filament is observed and the discharge is homogeneous.展开更多
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted i...Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87~ to 42.3~, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The micmhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment thne when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.展开更多
Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge image...Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.展开更多
The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge...The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.展开更多
The flat plane of small surface roughness below 0.1μm average roughness was obtained for monocrystalline diamond by nanosecond pulsed laser irradiation of 1060 nm and post-process acid cleaning,at a laser fluence aro...The flat plane of small surface roughness below 0.1μm average roughness was obtained for monocrystalline diamond by nanosecond pulsed laser irradiation of 1060 nm and post-process acid cleaning,at a laser fluence around the material removal threshold value.The glossy and flat plane at the bottom of the micro-groove was parallel to the top surface of the specimen,although the round beam of Gaussian mode was irradiated in the direction perpendicular to the top surface of specimen.The square beam of top-hat mode produced a shallower micro-groove with a wider,flatter bottom compared with the round beam in Gaussian mode.The creation method of the flat plane with small surface roughness was discussed in the arrangement strategy of linear micro-grooving by the square beam of top-hat mode.Normal side-by-side repetition of linear micro-grooving did not create a flat plane with constant depth.Therefore,a two-step scanning method was proposed in order to overcome the problem in the normal side-by-side repetition of liner micro-grooving.Non-removal areas were partly retained between the processing lines in the first step,and the laser scanning was conducted on the retained area in the second step.The newly proposed two-step scanning method was practical and useful to create a widely flat plane with small surface roughness,and the two-step scanning method provided superior control over the micro-groove depth.This proposed method can reduce the surface roughness in addition to the shape creation of monocrystalline diamond,and it can be used as a high-quality micro-shape fabrication method of monocrystalline diamond.展开更多
In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3IIu) rotational and vibrational temperatures are around 430 K and 0.24 e...In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3IIu) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between tile first negative system and the second positive system of N2, as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s.展开更多
Liver cancer is one of the most malignant cancers. It is reported that 600 000 patients died from liver cancer every year. [1,2] Hepatocellular carcinoma (HCC) is a particular problem because symptoms are not evident ...Liver cancer is one of the most malignant cancers. It is reported that 600 000 patients died from liver cancer every year. [1,2] Hepatocellular carcinoma (HCC) is a particular problem because symptoms are not evident until the disease has progressed and hepatitis B, which is prominent specific regions of Asia, is a common precursor of the disease. There are many liver cancer展开更多
The microstructure and electrical properties of ZnO-Bi2O3-Yb2O3 based varistor ceramics were investigated with various temperature effects from 900°C to 1050°C.From the results,it was observed that the incre...The microstructure and electrical properties of ZnO-Bi2O3-Yb2O3 based varistor ceramics were investigated with various temperature effects from 900°C to 1050°C.From the results,it was observed that the increase of sintering temperature offers a reduced capacitive effect from 0.460 nF to 0.321 nF.Furthermore,the grain sizes of varistors were varied from 6.8μm to 9.8μm.The consequence of such smaller grain sizes provided a better voltage gradient of about 895 V/mm for the disc sintered at 900°C and fallen drastically to 410 V/mm for the sample sintered at 1050°C.In addition,there was an increase of non-linearity index to a maximum value of 36.0 and reduced leakage current of 0.026 mA/cm2.However,the density of the varistor decreased with an increase of temperature from 5.41 g/cm3 to 5.24 g/cm3.With this base,the influence of varistor capacitance and high voltage gradient were scrutinized and it led an improved transition speed of the varistor assembly from non-conduction to conduction mode during intruding nanosecond transients.展开更多
Non-thermal plasma surface modification for epoxy resin(EP)to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulatedtransmission line.In this paper,a pulsed Ar...Non-thermal plasma surface modification for epoxy resin(EP)to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulatedtransmission line.In this paper,a pulsed Ar dual dielectrics atmospheric-pressure plasma jet(APPJ)was used for Si CxHyOzthin film deposition on EP samples.The film deposition was optimized by varying the treatment time while other parameters were kept at constants(treatment distance:10 mm,precursor flow rate:0.6 l min-(-1),maximum instantaneous power:3.08 k W and single pulse energy:0.18 m J).It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18%and 13%when the deposition time was3 min,respectively.The flashover voltage reduced as treatment time increased.Moreover,all the surface conductivity,surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min.Other measurements,such as atomic force microscopy and scanning electron microscope for EP surface morphology,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions,optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms.The results indicated that the original organic groups(C–H,C–C,C=O,C=C)were gradually replaced by the Si containing inorganic groups(Si–O–Si and Si–OH).The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage.However,when the plasma treatment time was longer than 3 min,the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.展开更多
A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse du...A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of .OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of .OH increased with the increase in peak voltage, and the generation rates of .OH were 4.1 ×10^-10 mol/s, 5.7× 10^-10 mol/s, and 7.7× 10^-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10^-12 mol/J obtained.展开更多
Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser(EDFL) utilizing a samarium oxide(Sm2O3) film. The Sm2O3 film exhibits a modulation depth of 33%, which is suitable for modelocking ...Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser(EDFL) utilizing a samarium oxide(Sm2O3) film. The Sm2O3 film exhibits a modulation depth of 33%, which is suitable for modelocking operation. The passively pulsed EDFL operates stably at 1569.8 nm within a pumping power from 109 to 146 m W. The train of generated output pulses has a pulse width of 356 nm repeated at a fundamental frequency of 0.97 MHz. The average output power of 3.91 m W is obtained at a pump power of 146 m W, corresponding to 4.0 nJ pulse energy. The experimental result indicates that the proposed Sm2O3 saturable absorber is viable for the construction of a flexible and reliably stable mode-locked pulsed fiber laser operating in the 1.5 m region.展开更多
Based on the concepts of fast polarization, effective electric field and electron impact ionization criterion, the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigat...Based on the concepts of fast polarization, effective electric field and electron impact ionization criterion, the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated, and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived. According to this formula, it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers. By calculating the effective relative dielectric constants for different types of polymers, the theoretical relation for the electric breakdown strengths of common polymers is predicted. To verify the prediction, the polymers of PE (polyethylene), PTFE (polytetrafluoroethelene), PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator. The experimental result shows EBD (PTFE) 〉 EBD (PMMA) 〉 EBD (Nylon) 〉 EBD (PE). This result is consistent with the theoretical prediction.展开更多
Large-scale non-thermal plasmas generated by nanosecond-pulse discharges have been used in various applications, including surface treatment, biomedical treatment, flow con- trol etc. In this paper, atmospheric-pressu...Large-scale non-thermal plasmas generated by nanosecond-pulse discharges have been used in various applications, including surface treatment, biomedical treatment, flow con- trol etc. In this paper, atmospheric-pressure diffuse discharge was produced by a homemade nanosecond-pulse generator with a full width at half maximum of 100 ns and a rise time of 70 ns. In order to increase the discharge area, multi-needle electrodes with a 3~3 array were designed. The electrical characteristics of the diffuse discharge array and optical images were investigated by the voltage-current waveforms and discharge images. The experimental results showed that the intensity of diffuse discharges in the center was significantly weaker than those at the margins, resulting in an inhomogeneous spatial uniformity in the diffuse discharge array. Simulation of the electric field showed that the inhomogeneous spatial uniformity was caused by the non-uniform distribution of the electric field in the diffuse discharge array. Moreover, the spatial uniformity of the diffuse discharge array could be improved by increasing the length of the needle in the centre of the array. Finally, the experimental results confirmed the simulation results, and the spatial uniformity of the nanosecond-pulse diffuse discharge array was significantly improved.展开更多
基金the financial support from the Beijing Municipal Natural Science Foundation (No. 1242015)National Undergraduate Innovation and Entrepreneurship Training Program of China (No. 202310015019)Discipline Construction of Material Science and Engineering(Nos. 21090122014 and 21090123007)。
文摘Ammonia is one of the most important chemical raw materials in both manufacture and life of human.Traditionally Haber-Bosch method for ammonia synthesis involves high temperature and high pressure conditions,leading to significant energy consumption and environmental pollution.Non-thermal plasma(NTP) is a promising alternative approach to ammonia synthesis at low temperature and atmospheric pressure.In this study,the synergistic effect of nanosecond pulsed dielectric barrier discharge(np-DBD) and Ni-MOF-74 catalyst was investigated in ammonia synthesis by utilizing nitrogen and hydrogen as feedstock.The results demonstrated that the plasma catalytic-synthesis process parameters play a crucial role in the synthesis process of ammonia.The highest ammonia synthesis rate of 5145.16 μmol·g^(-1)·h^(-1)with an energy efficiency of 1.27 g·kWh^(-1)was observed in the presence of the Ni-MOF-74 catalyst,which was3.7 times higher than that without Ni-MOF-74 catalyst.The synergistic effect of Ni-MOF-74catalyst and nanosecond pulsed plasma was explored by in-situ plasma discharge diagnostics.
基金the funding provided by National Natural Science Foundation of China (No.12065019)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 20KJB140025)+1 种基金the Open Fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No. JBGS032)the Scientific Research Project for the Introduction Talent of Yancheng Institute of Technology(Nos. XJR2020031 and XJR2021069)。
文摘Nanosecond pulsed discharges at atmospheric pressure in a pin-to-pin electrode configuration are well reproducible in time and space, which is beneficial to the fundamentals and applications of low-temperature plasmas. In this experiment, the discharges in helium(He) and He with 2.3%water vapor(H_(2)O) are driven by a series of 10 ns overvoltage pulses(~13 k V). Special attention is paid to the spectral characteristics obtained in the center of discharges by time-resolved optical emission spectroscopy. It is found that in helium, the emission of atomic and molecular helium during the afterglow is more intense than that in the active discharge, while in the He+2.3%H_(2)O mixture, helium emission is only observed during the discharge pulse and the molecular helium emission disappears. In addition, the emissions of OH(A-X) and Hα present similar behavior that increases sharply during the falling edge of the voltage pulse as the electrons cool down rapidly. The gas temperature is set to remain low at 540 K by fitting the OH(A-X) band. A comparative study on the emission of radiative species(He, He_(2), OH and H)is performed between these two discharge cases to derive their main production mechanisms. In both cases, the dominant primary ion is He^(+) at the onset of discharges, but their He^(+) charge transfer processes are quite different. Based on these experimental data and a qualitative discussion on the discharge kinetics, with regard to the present discharge conditions, it is shown that the electron-assisted three-body recombination processes appear to be the significant sources of radiative OH and H species in high-density plasmas.
基金Supported by the National Natural Science Foundation,China,No.82272568,81902247,and 32201013Natural Science Foundation of Shandong Province,China,No.ZR2021QH275+1 种基金Natural Science Foundation of Jinan City,China,No.202225070Guangdong Basic and Applied Basic Research Foundation,China,No.2022A1515220056.
文摘BACKGROUND Mesenchymal stem cells(MSCs)modulated by various exogenous signals have been applied extensively in regenerative medicine research.Notably,nanosecond pulsed electric fields(nsPEFs),characterized by short duration and high strength,significantly influence cell phenotypes and regulate MSCs differentiation via multiple pathways.Consequently,we used transcriptomics to study changes in messenger RNA(mRNA),long noncoding RNA(lncRNA),microRNA(miRNA),and circular RNA expression during nsPEFs application.AIM To explore gene expression profiles and potential transcriptional regulatory mechanisms in MSCs pretreated with nsPEFs.METHODS The impact of nsPEFs on the MSCs transcriptome was investigated through whole transcriptome sequencing.MSCs were pretreated with 5-pulse nsPEFs(100 ns at 10 kV/cm,1 Hz),followed by total RNA isolation.Each transcript was normalized by fragments per kilobase per million.Fold change and difference significance were applied to screen the differentially expressed genes(DEGs).Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to elucidate gene functions,complemented by quantitative polymerase chain reaction verification.RESULTS In total,263 DEGs were discovered,with 92 upregulated and 171 downregulated.DEGs were predominantly enriched in epithelial cell proliferation,osteoblast differentiation,mesenchymal cell differentiation,nuclear division,and wound healing.Regarding cellular components,DEGs are primarily involved in condensed chromosome,chromosomal region,actin cytoskeleton,and kinetochore.From aspect of molecular functions,DEGs are mainly involved in glycosaminoglycan binding,integrin binding,nuclear steroid receptor activity,cytoskeletal motor activity,and steroid binding.Quantitative real-time polymerase chain reaction confirmed targeted transcript regulation.CONCLUSION Our systematic investigation of the wide-ranging transcriptional pattern modulated by nsPEFs revealed the differential expression of 263 mRNAs,2 miRNAs,and 65 lncRNAs.Our study demonstrates that nsPEFs may affect stem cells through several signaling pathways,which are involved in vesicular transport,calcium ion transport,cytoskeleton,and cell differentiation.
基金Supported by National Basic Research Program of China(Grant No.2011CB013004)National Natural Science Foundation of China(Grant No.51005130)Research Fund of State Key Laboratory of Tribology,Tsinghua University(Grant no.SKLT12B06)
文摘Precision drilling with picosecond laser has been advocated to significantly improve the quality of micro-holes with reduced recast layer thickness and almost no heat affected zone.However,a detailed comparison between nanosecond and picosecond laser drilling techniques has rarely been reported in previous research.In the present study,a series of micro-holes are manufactured on stainless steel 304 using a nanosecond and a picosecond laser drilling system,respectively.The quality of the micro-holes,e.g.,recast layer,micro-crack,circularity,and conicity,etc,is evaluated by employing an optical microscope,an optical interferometer,and a scanning electron microscope.Additionally,the micro-structure of the samples between the edges of the micro-holes and the parent material is compared following etching treatment.The researching results show that a great amount of spattering material accumulated at the entrance ends of the nanosecond laser drilled micro-holes.The formation of a recast layer with a thickness of;5μm is detected on the side walls,associated with initiation of micro-cracks.Tapering phenomenon is also observed and the circularity of the micro-holes is rather poor.With regard to the micro-holes drilled by picosecond laser,the entrance ends,the exit ends,and the side walls are quite smooth without accumulation of spattering material,formation of recast layer and micro-cracks.The circularity of the micro-holes is fairly good without observation of tapering phenomenon.Furthermore,there is no obvious difference as for the micro-structure between the edges of the micro-holes and the parent material.This study proposes a picosecond laser helical drilling technique which can be used for effective manufacturing of high quality micro-holes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11211120156, 11274053, 11074027, 61178022, and 60978014)the Science and Technology Department of Jilin Province, China (Grant Nos. 20100521, 20100168, and 20111812)the SRF for ROCS, SEM
文摘Aluminum samples have been analyzed by femtosecond polarization-resolved laser-induced breakdown spectroscopy (fs-PRLIBS). We compare the obtained spectra with those obtained from nanosecond PRLIBS (ns-PRLIBS). The main specific features of fs-PRLIBS are that a lower plasma temperature leads to a low level of continuum and no species are detected from the ambient gas. Furthermore, signals obtained by fs-PRLIBS show a higher stability than those of ns-PRLIBS. However, more elements are detected in the ns-PRLIBS spectra.
基金National Natural Science Foundation of China (No.50237010)
文摘An application of magnetic field to the nanosecond pulse corona discharge is investigated. A cylinder reactor with different corona electrodes is set up for experimental study. A magnetic field with its direction perpendicular to the corona discharge is applied. Different discharge images are taken under single nanosecond pulse with a high sensitive UV-visible light imagine recorder. Experimental results show that with a cross magnetic field the nanosecond corona discharge both generates paths and develops homogeneously in space more than that without the magnetic field. The results may lead to a possibility to apply a cross magnetic field on nanosecond pulse corona discharge for getting higher desulfurization efficiency.
基金supported by Funding of Jiangsu Innovation Program for Graduate Education(No. KYLX16_0310)the Fundamental Research Funds for the Central Universities (No. NP2016406)+1 种基金supported by Graduate Innovation Center in NUAA (No. kfjj20170117)China Postdoctoral Science Foundation (No. 2017M610325)
文摘Dielectric barrier discharge (DBD) plasma is one of most promising flow control method for its several advantages. The present work investigates the control authority of nanosecond pulse DBD plasma actuators on a flying wing model's aerodynamic characteristics. The aerodynamic forces and moments are studied by means of experiment and numerical simulation. The numerical simulation results are in good agreement with experiment results. Both results indicate that the NS-DBD plasma actuators have negligible effect on aerodynamic forces and moment at the angles of attack smaller than 16-. However, significant changes can be achieved with actuation when the model's angle of attack is larger than 16° where the flow separation occurs. The spatial flow field structure results from numerical simulation suggest that the volumetric heat produced by NS-DBD plasma actuator changes the local temperature and density and induces several vortex structures, which strengthen the mixing of the shear layer with the main flow and delay separation or even reattach the separated flow.
基金supported by National Natural Science Foundation of China (Nos. 50707032, 11076026)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KGCX2-YW-339)+1 种基金the National Basic Research Program of China (No. 2011CB209405)the State Key Laboratory of Control and Simulation of Power Systems and Generating Equipment in Tsinghua University (No. SKLD09KZ05)
文摘Dielectric barrier discharge (DBD) between two cylindrical glass containers with salt water generated by a nanosecond repetitively pulsed power generator is reported. The electrical parameters, luminous images and spectrum diagnosis are presented. It is shown that the DBD possesses a large discharge current and an intense optical emission from the nitrogen second positive system below 400 nm. The gas temperature remains very close to room temperature regardless of pulse polarity. Luminous photographs with a short exposure time down to 2 ns indicate that no filament is observed and the discharge is homogeneous.
基金partly supported by National Natural Science Foundation of China under Grant No. 51477164the National Basic Research Program of China under Grant No. 2014CB239505-03+1 种基金the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant No. LAPS16013the Science and Technology Project of State Grid Corporation of China
文摘Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87~ to 42.3~, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The micmhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment thne when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.
基金supported by National Natural Science Foundation of China(No.51437002)
文摘Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap.
基金supported by the National Basic Research Program of China(973 Program)(No.2011CB209405)National Natural Science Foundation of China(No.51207154)the Opening Project of State Key Laboratory of Electrical Insulation and Power Equipment in Xi'an Jiaotong University of China(No.EIPE12204)
文摘The characteristics of high pressure sulphur hexafluoride(SF6) discharges in a highly non-uniform electric field under repetitive nanosecond pulses are investigated in this paper.The influencing factors on discharge process,such as gas pressure,pulse repetition frequency(PRF),and number of applied pulses,are analyzed.Experimental results show that the corona intensity weakens with the increase of gas pressure and strengthens with the increase of PRF or number of applied pulses.Spark discharge images suggest that a shorter and thicker discharge plasma channel will lead to a larger discharge current.The number of applied pulses to breakdown descends with the increase of PRF and ascends with the rise of gas pressure.The reduced electric field(E/p) decreases with the increase of PRF in all circumstances.The experimental results provide significant supplements to the dielectric characteristics of strongly electronegative gases under repetitive nanosecond pulses.
基金partially supported by Osawa Scientific Studies Grants Foundation
文摘The flat plane of small surface roughness below 0.1μm average roughness was obtained for monocrystalline diamond by nanosecond pulsed laser irradiation of 1060 nm and post-process acid cleaning,at a laser fluence around the material removal threshold value.The glossy and flat plane at the bottom of the micro-groove was parallel to the top surface of the specimen,although the round beam of Gaussian mode was irradiated in the direction perpendicular to the top surface of specimen.The square beam of top-hat mode produced a shallower micro-groove with a wider,flatter bottom compared with the round beam in Gaussian mode.The creation method of the flat plane with small surface roughness was discussed in the arrangement strategy of linear micro-grooving by the square beam of top-hat mode.Normal side-by-side repetition of linear micro-grooving did not create a flat plane with constant depth.Therefore,a two-step scanning method was proposed in order to overcome the problem in the normal side-by-side repetition of liner micro-grooving.Non-removal areas were partly retained between the processing lines in the first step,and the laser scanning was conducted on the retained area in the second step.The newly proposed two-step scanning method was practical and useful to create a widely flat plane with small surface roughness,and the two-step scanning method provided superior control over the micro-groove depth.This proposed method can reduce the surface roughness in addition to the shape creation of monocrystalline diamond,and it can be used as a high-quality micro-shape fabrication method of monocrystalline diamond.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50906100 and 10972236)the Science Foundation of National Excellent Doctoral Dissertation of China (Grant No. 201172)
文摘In this paper we report on an experimental study of the characteristics of nanosecond pulsed discharge plasma aerodynamic actuation. The N2 (C3IIu) rotational and vibrational temperatures are around 430 K and 0.24 eV, respectively. The emission intensity ratio between tile first negative system and the second positive system of N2, as a rough indicator of the temporally and spatially averaged electron energy, has a minor dependence on applied voltage amplitude. The induced flow direction is not parallel, but vertical to the dielectric layer surface, as shown by measurements of body force, velocity, and vorticity. Nanosecond discharge plasma aerodynamic actuation is effective in airfoil flow separation control at freestream speeds up to 100 m/s.
基金supported by grants from the National Natural Science Foundation of China(3070078)a National S&T Major Project(2012ZX10002017)+1 种基金the National Basic Research Program of China(973 Program)(2009CB522403)Zhejiang Medical Research Funding(2008B079)
文摘Liver cancer is one of the most malignant cancers. It is reported that 600 000 patients died from liver cancer every year. [1,2] Hepatocellular carcinoma (HCC) is a particular problem because symptoms are not evident until the disease has progressed and hepatitis B, which is prominent specific regions of Asia, is a common precursor of the disease. There are many liver cancer
文摘The microstructure and electrical properties of ZnO-Bi2O3-Yb2O3 based varistor ceramics were investigated with various temperature effects from 900°C to 1050°C.From the results,it was observed that the increase of sintering temperature offers a reduced capacitive effect from 0.460 nF to 0.321 nF.Furthermore,the grain sizes of varistors were varied from 6.8μm to 9.8μm.The consequence of such smaller grain sizes provided a better voltage gradient of about 895 V/mm for the disc sintered at 900°C and fallen drastically to 410 V/mm for the sample sintered at 1050°C.In addition,there was an increase of non-linearity index to a maximum value of 36.0 and reduced leakage current of 0.026 mA/cm2.However,the density of the varistor decreased with an increase of temperature from 5.41 g/cm3 to 5.24 g/cm3.With this base,the influence of varistor capacitance and high voltage gradient were scrutinized and it led an improved transition speed of the varistor assembly from non-conduction to conduction mode during intruding nanosecond transients.
基金supported by National Natural Science Foundation of China under contract No.11575194the National Basic Research Program of China(973 Project) under contract No.2014CB239505-3+2 种基金Natural Science Foundation of Hebei Province under contract No.E2015502081the Fundamental Research Funds for the Central Universities under contract No.2016ZZD07the Young Scholar of the Chang Jiang Scholars Program,Ministry of Education,China
文摘Non-thermal plasma surface modification for epoxy resin(EP)to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulatedtransmission line.In this paper,a pulsed Ar dual dielectrics atmospheric-pressure plasma jet(APPJ)was used for Si CxHyOzthin film deposition on EP samples.The film deposition was optimized by varying the treatment time while other parameters were kept at constants(treatment distance:10 mm,precursor flow rate:0.6 l min-(-1),maximum instantaneous power:3.08 k W and single pulse energy:0.18 m J).It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18%and 13%when the deposition time was3 min,respectively.The flashover voltage reduced as treatment time increased.Moreover,all the surface conductivity,surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min.Other measurements,such as atomic force microscopy and scanning electron microscope for EP surface morphology,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions,optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms.The results indicated that the original organic groups(C–H,C–C,C=O,C=C)were gradually replaced by the Si containing inorganic groups(Si–O–Si and Si–OH).The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage.However,when the plasma treatment time was longer than 3 min,the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.
文摘A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of .OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of .OH increased with the increase in peak voltage, and the generation rates of .OH were 4.1 ×10^-10 mol/s, 5.7× 10^-10 mol/s, and 7.7× 10^-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10^-12 mol/J obtained.
基金Supported by the INTI Research Grant Scheme 2018 under Grant No INTI-FITS-01-06-2018
文摘Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser(EDFL) utilizing a samarium oxide(Sm2O3) film. The Sm2O3 film exhibits a modulation depth of 33%, which is suitable for modelocking operation. The passively pulsed EDFL operates stably at 1569.8 nm within a pumping power from 109 to 146 m W. The train of generated output pulses has a pulse width of 356 nm repeated at a fundamental frequency of 0.97 MHz. The average output power of 3.91 m W is obtained at a pump power of 146 m W, corresponding to 4.0 nJ pulse energy. The experimental result indicates that the proposed Sm2O3 saturable absorber is viable for the construction of a flexible and reliably stable mode-locked pulsed fiber laser operating in the 1.5 m region.
文摘Based on the concepts of fast polarization, effective electric field and electron impact ionization criterion, the effect of polymer type on electric breakdown strength (EBD) on a nanosecond time scale is investigated, and a formula that qualitatively characterizes the relation between the electric breakdown strength and the polymer type is derived. According to this formula, it is found that the electric breakdown strength decreases with an increase in the effective relative dielectric constants of the polymers. By calculating the effective relative dielectric constants for different types of polymers, the theoretical relation for the electric breakdown strengths of common polymers is predicted. To verify the prediction, the polymers of PE (polyethylene), PTFE (polytetrafluoroethelene), PMMA (organic glass) and Nylon are tested with a nanosecond-pulse generator. The experimental result shows EBD (PTFE) 〉 EBD (PMMA) 〉 EBD (Nylon) 〉 EBD (PE). This result is consistent with the theoretical prediction.
基金supported by National Natural Science Foundation of China(Nos.51222701,51477164)the National Basic Research Program of China(No.2014CB239505-3)
文摘Large-scale non-thermal plasmas generated by nanosecond-pulse discharges have been used in various applications, including surface treatment, biomedical treatment, flow con- trol etc. In this paper, atmospheric-pressure diffuse discharge was produced by a homemade nanosecond-pulse generator with a full width at half maximum of 100 ns and a rise time of 70 ns. In order to increase the discharge area, multi-needle electrodes with a 3~3 array were designed. The electrical characteristics of the diffuse discharge array and optical images were investigated by the voltage-current waveforms and discharge images. The experimental results showed that the intensity of diffuse discharges in the center was significantly weaker than those at the margins, resulting in an inhomogeneous spatial uniformity in the diffuse discharge array. Simulation of the electric field showed that the inhomogeneous spatial uniformity was caused by the non-uniform distribution of the electric field in the diffuse discharge array. Moreover, the spatial uniformity of the diffuse discharge array could be improved by increasing the length of the needle in the centre of the array. Finally, the experimental results confirmed the simulation results, and the spatial uniformity of the nanosecond-pulse diffuse discharge array was significantly improved.