Ti-24Nb-4Zr-8Sn, abbreviated as Ti2448 from its chemical composition in weight percent, is a multifunctional /3 type titanium alloy with body centered cubic (bcc) crystal structure, and its highly localized plastic ...Ti-24Nb-4Zr-8Sn, abbreviated as Ti2448 from its chemical composition in weight percent, is a multifunctional /3 type titanium alloy with body centered cubic (bcc) crystal structure, and its highly localized plastic deformation behavior contributes significantly to grain refinement during conventional cold processing. In the paper, the nanostructured (NS) alloy with grain size less than 50 nm produced by cold rolling has been used to investigate its superplastic deformation behavior by uniaxial tensile tests at initial strain rates of 1.5 ×10-2, 1.5×10^-3 and 1.6×10-4 s-1 and temperatures of 600,650 and 700℃. The results show that, in comparison with the coarse-grained alloy with size of 50 μm, the NS alloy has better superplasticity with elongation up to ~275% and ultimate strength of 50-100 MPa. Strain rate sensitivity (m) of the NS alloy is 0.21, 0.30 and 0.29 for 600,650 and 700℃, respectively. These results demonstrate that grain refinement is a valid way to enhance the superplasticity of Ti2448 alloy.展开更多
Both the coarsening of Al2O3 nanoparticles and the growth of Cu nanograins of mechanically milled nanostructured Cu-5 vol.%Al2O3 composites with, and without, trace amounts of Ti during annealing at973 K for 1 h were ...Both the coarsening of Al2O3 nanoparticles and the growth of Cu nanograins of mechanically milled nanostructured Cu-5 vol.%Al2O3 composites with, and without, trace amounts of Ti during annealing at973 K for 1 h were investigated. It was found that doping with a small amount of Ti(e.g. 0.2 wt%) in a nanostructured Cu-5 vol.%Al2O3 composite effectively suppressed the coarsening of Al2O3 nanoparticles during exposure at this temperature. Further, the Ti addition also prevented the concomitant abnormal growth of the copper grains normally caused by the coarsening of the Al2O3 nanoparticles. Energy dispersive X-ray spectroscopy analysis of the Al2O3 nanoparticles in the annealed Cu-5 vol.%Al2 O3-0.2 wt%Ti sample suggested that the Ti atoms either diffused into the Al2O3 nanoparticles or segregated to the Cu/Al2O3 interfaces to form Ti-doped Al2O3 nanoparticles, which was more stable than Ti-free Al2O3 nanoparticles during annealing at high homologous temperatures.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51071152and 50901080)the National High Technology Research and Development Program of China (No.2011AA030106)
文摘Ti-24Nb-4Zr-8Sn, abbreviated as Ti2448 from its chemical composition in weight percent, is a multifunctional /3 type titanium alloy with body centered cubic (bcc) crystal structure, and its highly localized plastic deformation behavior contributes significantly to grain refinement during conventional cold processing. In the paper, the nanostructured (NS) alloy with grain size less than 50 nm produced by cold rolling has been used to investigate its superplastic deformation behavior by uniaxial tensile tests at initial strain rates of 1.5 ×10-2, 1.5×10^-3 and 1.6×10-4 s-1 and temperatures of 600,650 and 700℃. The results show that, in comparison with the coarse-grained alloy with size of 50 μm, the NS alloy has better superplasticity with elongation up to ~275% and ultimate strength of 50-100 MPa. Strain rate sensitivity (m) of the NS alloy is 0.21, 0.30 and 0.29 for 600,650 and 700℃, respectively. These results demonstrate that grain refinement is a valid way to enhance the superplasticity of Ti2448 alloy.
基金supported financially by the China Scholarship Council (CSC)National Natural Science Foundation of China (Project No. 51271115)+1 种基金the Ministry of Science and Technology, China (Project No. 2012CB619600)the SJTU-UNSW Strategic Collaboration to conduct this investigation
文摘Both the coarsening of Al2O3 nanoparticles and the growth of Cu nanograins of mechanically milled nanostructured Cu-5 vol.%Al2O3 composites with, and without, trace amounts of Ti during annealing at973 K for 1 h were investigated. It was found that doping with a small amount of Ti(e.g. 0.2 wt%) in a nanostructured Cu-5 vol.%Al2O3 composite effectively suppressed the coarsening of Al2O3 nanoparticles during exposure at this temperature. Further, the Ti addition also prevented the concomitant abnormal growth of the copper grains normally caused by the coarsening of the Al2O3 nanoparticles. Energy dispersive X-ray spectroscopy analysis of the Al2O3 nanoparticles in the annealed Cu-5 vol.%Al2 O3-0.2 wt%Ti sample suggested that the Ti atoms either diffused into the Al2O3 nanoparticles or segregated to the Cu/Al2O3 interfaces to form Ti-doped Al2O3 nanoparticles, which was more stable than Ti-free Al2O3 nanoparticles during annealing at high homologous temperatures.