Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects ...Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects of applied voltage amplitude,pulse repetition frequency,gap width andγcoefficient on the multiple-current-pulse(MCP)discharge.The results indicate that the MCP behavior will lead to the stratification of electron density distribution in axial direction.Traditional MCP manipulating methods,such as reducing the applied voltage amplitude,increasing the applied voltage frequency,adjusting the gap width,cannot regulate MCPs exhibiting in this work.Further analyses reveal that the increasing electric field of the cathode fall region is the basis for the emergence of MCP behavior.展开更多
The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings cent...The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.展开更多
A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulatio...A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulations is presented for transistor sizing. Simulation results show that an improvement of up to 12% over the conventional technique at 1GHz is obtained with this circuit,which can run 1.6 times faster than the existing technique with the same noise immunity.展开更多
We have made a gain-switched all-solid-state quasi-continuous-wave (QCW) tunable Ti:sapphire laser system, which is pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. Based on the theory of gain-switch...We have made a gain-switched all-solid-state quasi-continuous-wave (QCW) tunable Ti:sapphire laser system, which is pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. Based on the theory of gain-switching and the study on the influencing factors of the output pulse width, an effective method for obtaining high power and narrow pulse width output is proposed. Through deliberately designing the pump source and the resonator of the Ti:sapphire laser, when the repetition rate is 6 kHz and the length of the cavity is 220 mm, at an incident pump power of 22 W, the tunable Ti:sapphire laser from 700 to 950nm can be achieved. It has a maximum average output power of 5.6W at 800nm and the pulse width of 13.2 ns, giving an optical conversion efficiency of 25.5% from the 532 mn pump laser to the Ti:sapphire laser.展开更多
In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expans...In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.展开更多
基金supported by National Natural Science Foundation of China(No.51877086)。
文摘Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects of applied voltage amplitude,pulse repetition frequency,gap width andγcoefficient on the multiple-current-pulse(MCP)discharge.The results indicate that the MCP behavior will lead to the stratification of electron density distribution in axial direction.Traditional MCP manipulating methods,such as reducing the applied voltage amplitude,increasing the applied voltage frequency,adjusting the gap width,cannot regulate MCPs exhibiting in this work.Further analyses reveal that the increasing electric field of the cathode fall region is the basis for the emergence of MCP behavior.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2014AA041901NSAF Foundation of the National Natural Science Foundation of China under Grant No U1330134+1 种基金the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02the National Natural Science Foundation of China under Grant Nos 61308024 and 11174305
文摘The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.
文摘A novel circuit with a narrow pulse driving structure is proposed for enhancing the noise immunity and improving the performance of wide fan-in dynamic circuits. Also,an analytical mode that agrees well with simulations is presented for transistor sizing. Simulation results show that an improvement of up to 12% over the conventional technique at 1GHz is obtained with this circuit,which can run 1.6 times faster than the existing technique with the same noise immunity.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)Tianjin Applied Fundamental Research Project (Grant No07JCZDJC05900)
文摘We have made a gain-switched all-solid-state quasi-continuous-wave (QCW) tunable Ti:sapphire laser system, which is pumped by a 532 nm intracavity frequency-doubled Nd:YAG laser. Based on the theory of gain-switching and the study on the influencing factors of the output pulse width, an effective method for obtaining high power and narrow pulse width output is proposed. Through deliberately designing the pump source and the resonator of the Ti:sapphire laser, when the repetition rate is 6 kHz and the length of the cavity is 220 mm, at an incident pump power of 22 W, the tunable Ti:sapphire laser from 700 to 950nm can be achieved. It has a maximum average output power of 5.6W at 800nm and the pulse width of 13.2 ns, giving an optical conversion efficiency of 25.5% from the 532 mn pump laser to the Ti:sapphire laser.
文摘In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.