AIM: To track the short-term neck narrowing changes in Birmingham metal-on-metal hip resurfacing(MOMHR) patients. METHODS: Since 2001, the Center for Hip and Knee Replacement started a registry to prospectively collec...AIM: To track the short-term neck narrowing changes in Birmingham metal-on-metal hip resurfacing(MOMHR) patients. METHODS: Since 2001, the Center for Hip and Knee Replacement started a registry to prospectively collect data on hip and knee replacement patients. From June 2006 to October 2008, 139 MOMHR were performed at our center by two participate surgeons using Birmingham MOMHR prosthesis(Smith Nephew, United States). It is standard of care for patients to obtain low, anteriorposterior(LAP) pelvis radiographs immediately after MOMHR procedure and then at 3 mo, 1 year and 2 year follow up office visits. Inclusion criteria for the present study included patients who came back for follow up office visit at above mentioned time points and got LAP radiographs. Exclusion criteria include patients who missed more than two follow up time points and those with poor-quality X-rays. Two orthopaedic residency trained research fellows reviewed the X-rays independently at 4 time points, i.e., immediate after surgery, 3 mo, 1 year and 2 year. Neck-to-prosthesis ratio(NPR) was used as main outcome measure. Twenty cases were used as subjects to identify the reliability between two observers. An intraclass correlation coefficient at 0.8 was considered as satisfied. A paired t-test was used to evaluate the significant difference between different time points with P < 0.05 considered to be statistically significant.RESULTS: The mean NPRs were 0.852 ± 0.056, 0.839 ± 0.052, 0.835 ± 0.051, 0.83 ± 0.04 immediately, 3 mo, 1 year and 2 years post-operatively respectively. At 3 mo, NPR was significantly different from immediate postoperative X-ray(P < 0.001). There was no difference between 3 mo and 1 year(P = 0.14) and 2 years(P = 0.53). Femoral neck narrowing(FNN) exceeding 10% of the diameter of the neck was observed in only 4 patients(5.6%) at two years follow up. None of these patients developed a femoral neck fracture(FNF). CONCLUSION: Femoral neck narrowing after MOMHR occurred as early as 3 mo postoperatively, and stabilized thereafter. Excessive FNN was not common in patients within the first two years of surgery and was not correlated with risk of FNF.展开更多
A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers...A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers and iron perovskite oxide[(FeO_2)(BaO)(FeO_2)]^(2-)layers along the c axis that are separated by barium ions with Fe^(3+) fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuC h-based(Ch =S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba_3Fe_2O_5Cu_2S_2 is an antiferromagnetic semiconductor with a Ne′el temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3 d states of Fe ions that antiferromagnetically arranged in FeO_2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr_3Sc_2O_5Cu_2S_2.展开更多
We investigate the resonance fluorescence spectrum of an atomic three-level ladder system driven by two laser fields. We show that such a system emulates to a large degree a V-type atom with parallel dipole moments-th...We investigate the resonance fluorescence spectrum of an atomic three-level ladder system driven by two laser fields. We show that such a system emulates to a large degree a V-type atom with parallel dipole moments-the latter being a system that exhibits spontaneously generated coherence and can display ultrasharp spectral lines. We find a suitable energy scheme in a SSRb atom and experimentally observe the narrowing of the central peak in a rubidium atomic beam. The corresponding spectrum can convindngiy demonstrate the existence of spontaneously generated coherence.展开更多
This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced transparency (EIT) in a thin vapour film of A-type atoms confined between two dielectric walls whose thickness ...This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced transparency (EIT) in a thin vapour film of A-type atoms confined between two dielectric walls whose thickness is comparable with the wavelength of the probe field. The absorptive lines of the weak probe field exhibit strong reductions and very narrow EIT dips, which mainly results from the velocity slow-down effects and transient behaviour of atoms in a confined system. It is also shown that the lines are modified by the strength of the coupling field and the ratio of L/λ, with L the film thickness and λthe wavelength of the probe field. A simple robust recipe for EIT in a thin medium is achievable in experiment.展开更多
We present a quantum-theoretical treatment of cavity linewidth narrowing with intracavity electromagnetically in- duced transparency (EIT). By means of intracavity EIT, the photons in the cavity are in the form of c...We present a quantum-theoretical treatment of cavity linewidth narrowing with intracavity electromagnetically in- duced transparency (EIT). By means of intracavity EIT, the photons in the cavity are in the form of cavity polaritons: bright-state polariton and dark-state polariton. Strong coupling of the bright-state polariton to the excited state induces an effect known as vacuum Rabi splitting, whereas the dark-state polariton decoupled from the excited state induces a narrow cavity transmission window. Our analysis would provide a quantum theory of linewidth narrowing with a quantum field pulse.展开更多
Inequality in distribution has become an issue of public concern in China. Incomes of the Chinese people have grown year after year ever since the reform and opening era began in the late 1970s. Meanwhile, the income ...Inequality in distribution has become an issue of public concern in China. Incomes of the Chinese people have grown year after year ever since the reform and opening era began in the late 1970s. Meanwhile, the income gap between urban and rural residents has widened constantly, from 1.8:1 in the mid-1980s to 3.2:1 in 2003. In a report entitled Analysis and Forecast of China's Social Conditions 2004-2005, experts with the Chinese Academy of Social Sciences listed the widening income gaps as the second most serious of the six problems China is facing. The report notes that such gaps have kept widening not only between individual workers in the same profession but also between workers in different industries and regions. In view of this, the national economic work conference held in early January called for effort to improve the order of income distribution and readjust the distribution of national wealth in an appropriate manner. How to view the problem of inequality in distribution as we see now? How the divide of the rich and the poor affects the improvement of human rights? What should be done to narrow the gap between the rich and the poor? We have dis- cussed these questions with two leading social scientists in China, Sun Guohua, pro- fessor of law at the Renmin University of China and Prof. Hu Angang of Qinghua University, a noted expert in study of the conditions in China.展开更多
For a three-level atom, two nondegenerate(even microwave and optical) electric dipole transitions are usually allowed;for either of these, the fluorescence spectra are well-described in terms of spontaneous transition...For a three-level atom, two nondegenerate(even microwave and optical) electric dipole transitions are usually allowed;for either of these, the fluorescence spectra are well-described in terms of spontaneous transitions from a triplet of dressed sublevels to an adjacent lower-lying triplet. When the three dressed sublevels are equally spaced from each other, a remarkable feature known as degenerate cascade fluorescence takes place, which displays a five-peaked structure. We show that a single cavity can make all the spectral lines extremely narrow, whether they arise from cavity-coupled or cavity-free transitions. This effect is based on intrinsic cascade lasing feedback and makes it possible to use a single microwave cavity(even a bad cavity) to narrow the spectral lines in the optical frequency regime.展开更多
Stable laser emission with narrow linewidth is of critical importance in many applications,including coherent communications,LIDAR,and remote sensing.In this work,the physics underlying spectral narrowing of self-inje...Stable laser emission with narrow linewidth is of critical importance in many applications,including coherent communications,LIDAR,and remote sensing.In this work,the physics underlying spectral narrowing of self-injection-locked on-chip lasers to Hz-level lasing linewidth is investigated using a composite-cavity structure.Heterogeneously integrated III–V/SiN lasers operating with quantum-dot and quantum-well active regions are analyzed with a focus on the effects of carrier quantum confinement.The intrinsic differences are associated with gain saturation and carrier-induced refractive index,which are directly connected with 0-and 2-dimensional carrier densities of states.Results from parametric studies are presented for tradeoffs involved with tailoring the linewidth,output power,and injection current for different device configurations.Though both quantum-well and quantum-dot devices show similar linewidth-narrowing capabilities,the former emits at a higher optical power in the self-injection-locked state,while the latter is more energy-efficient.Lastly,a multi-objective optimization analysis is provided to optimize the operation and design parameters.For the quantum-well laser,minimizing the number of quantum-well layers is found to decrease the threshold current without significantly reducing the output power.For the quantum-dot laser,increasing the quantum-dot layers or density in each layer increases the output power without significantly increasing the threshold current.These findings serve to guide more detailed parametric studies to produce timely results for engineering design.展开更多
This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show...This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system.Experimentally,a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%,which is nearly 2.5 times compressed compared with the linewidth of the pump(7.36 kHz).In addition,the theorical analysis shows that at a pump power of 60Wand a coupling mirror reflectivity of 96%,a Stokes output with a linewidth of 1.6 kHz and up to 80%optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity.This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.展开更多
The effect of negative bias temperature instability (NBTI) on a single event transient (SET) has been studied in a 130 nm bulk silicon CMOS process based on 3D TCAD device simulations. The investigation shows that...The effect of negative bias temperature instability (NBTI) on a single event transient (SET) has been studied in a 130 nm bulk silicon CMOS process based on 3D TCAD device simulations. The investigation shows that NBTI can result in the pulse width and amplitude of SET narrowing when the heavy ion hits the PMOS in the high-input inverter; but NBTI can result in the pulse width and amplitude of SET broadening when the heavy ion hits the NMOS in the low-input inverter. Based on this study, for the first time we propose that the impact of NBTI on a SET produced by the heavy ion hitting the NMOS has already been a significant reliability issue and should be of wide concern, and the radiation hardened design must consider the impact of NBTI on a SET.展开更多
Heavy doping of the base in HBTs brings about a bandgap narrowing (BGN) effect, which modifies the intrinsic carrier density and disturbs the band offset, and thus leads to the change of the currents. Based on a the...Heavy doping of the base in HBTs brings about a bandgap narrowing (BGN) effect, which modifies the intrinsic carrier density and disturbs the band offset, and thus leads to the change of the currents. Based on a thermionic-field-diffusion model that is used to the analyze the performance of an abrupt HBT with a heavydoped base, the conclusion is made that, although the BGN effect makes the currents obviously change due to the modification of the intrinsic carrier density, the band offsets disturbed by the BGN effect should also be taken into account in the analysis of the electrical characteristics of abrupt HBTs. In addition, the BGN effect changes the bias voltage for the onset of Kirk effects.展开更多
This study considered whether the narrowing of the upper (broad and wandering) reaches of the Lower Yellow River could result in a reduction in sedimentation and even an increase in channel erosion in both the upper...This study considered whether the narrowing of the upper (broad and wandering) reaches of the Lower Yellow River could result in a reduction in sedimentation and even an increase in channel erosion in both the upper and the lower (narrow and meandering) reaches. Analysis of field data and numerical modeling results both justify the proposal to narrow the channel. A positive correlation was found between channel eroded-area and the channel width. Therefore narrowing under conditions of low flow will reduce the amount of erosion in the reach, which, in turn, will reduce the amount of sediment transported into the lower channel. This will reduce the amount of siltation in the lower reaches of the river. However, narrowing under conditions of high flow with a low concentration of sediment will reduce both the extent of flood attenuation along the narrowed channel and the amount of lateral channel bank collapse, which results in increased flows and less sedimentation in the lower channel, leading to increased erosion. When flows with a high concentration of sediment are released from the Xiaolangdi Reservoir, both the lower narrow channel and the upper channel can transport a large amount of the sediment load. It is concluded that the narrowing of the upper broad channel will result in a reduction in sedimentation, or even in channel erosion, in both the upper and the lower channels if the reservoir is operated such that the volume of sediment added during low flows is balanced by the volume eroded during high flows with a low concentration of sediment.展开更多
In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expans...In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.展开更多
Fast radio bursts(FRBs)are short-duration radio transients with mysterious origins.Since their uncertainty,there are very few FRBs observed by different instruments simultaneously.This study presents a detailed analys...Fast radio bursts(FRBs)are short-duration radio transients with mysterious origins.Since their uncertainty,there are very few FRBs observed by different instruments simultaneously.This study presents a detailed analysis of a burst from FRB 20190520B observed by FAST and Parkes at the same time.The spectrum of this individual burst ended at the upper limit of the FAST frequency band and was simultaneously detected by the Parkes telescope in the 1.5–1.8GHz range.By employing spectral energy distribution(SED)and spectral sharpness methods,we confirmed the presence of narrow-band radiation in FRB 20190520B,which is crucial for understanding its radiation mechanisms.Our findings support the narrow-band characteristics that most repeaters exhibit.This work also highlights the necessity of continued multiband observations to explore its periodicity and frequency-dependent properties,contributing to an in-depth understanding of FRB phenomena.展开更多
A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr...A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.展开更多
We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction rev...We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM)....The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
文摘AIM: To track the short-term neck narrowing changes in Birmingham metal-on-metal hip resurfacing(MOMHR) patients. METHODS: Since 2001, the Center for Hip and Knee Replacement started a registry to prospectively collect data on hip and knee replacement patients. From June 2006 to October 2008, 139 MOMHR were performed at our center by two participate surgeons using Birmingham MOMHR prosthesis(Smith Nephew, United States). It is standard of care for patients to obtain low, anteriorposterior(LAP) pelvis radiographs immediately after MOMHR procedure and then at 3 mo, 1 year and 2 year follow up office visits. Inclusion criteria for the present study included patients who came back for follow up office visit at above mentioned time points and got LAP radiographs. Exclusion criteria include patients who missed more than two follow up time points and those with poor-quality X-rays. Two orthopaedic residency trained research fellows reviewed the X-rays independently at 4 time points, i.e., immediate after surgery, 3 mo, 1 year and 2 year. Neck-to-prosthesis ratio(NPR) was used as main outcome measure. Twenty cases were used as subjects to identify the reliability between two observers. An intraclass correlation coefficient at 0.8 was considered as satisfied. A paired t-test was used to evaluate the significant difference between different time points with P < 0.05 considered to be statistically significant.RESULTS: The mean NPRs were 0.852 ± 0.056, 0.839 ± 0.052, 0.835 ± 0.051, 0.83 ± 0.04 immediately, 3 mo, 1 year and 2 years post-operatively respectively. At 3 mo, NPR was significantly different from immediate postoperative X-ray(P < 0.001). There was no difference between 3 mo and 1 year(P = 0.14) and 2 years(P = 0.53). Femoral neck narrowing(FNN) exceeding 10% of the diameter of the neck was observed in only 4 patients(5.6%) at two years follow up. None of these patients developed a femoral neck fracture(FNF). CONCLUSION: Femoral neck narrowing after MOMHR occurred as early as 3 mo postoperatively, and stabilized thereafter. Excessive FNN was not common in patients within the first two years of surgery and was not correlated with risk of FNF.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51472266,51202286,and 91422303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020100)the ICDD
文摘A new layered Cu-based oxychalcogenide Ba_3Fe_2O_5Cu_2S_2 has been synthesized and its magnetic and electronic properties were revealed. Ba_3Fe_2O_5Cu_2S_2 is built up by alternatively stacking [Cu_2S_2]^(2-) layers and iron perovskite oxide[(FeO_2)(BaO)(FeO_2)]^(2-)layers along the c axis that are separated by barium ions with Fe^(3+) fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuC h-based(Ch =S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba_3Fe_2O_5Cu_2S_2 is an antiferromagnetic semiconductor with a Ne′el temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3 d states of Fe ions that antiferromagnetically arranged in FeO_2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr_3Sc_2O_5Cu_2S_2.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB921603)the National Natural Science Foundation of China (Grant Nos. 11074097,10904048,10974071,and 11004080)
文摘We investigate the resonance fluorescence spectrum of an atomic three-level ladder system driven by two laser fields. We show that such a system emulates to a large degree a V-type atom with parallel dipole moments-the latter being a system that exhibits spontaneously generated coherence and can display ultrasharp spectral lines. We find a suitable energy scheme in a SSRb atom and experimentally observe the narrowing of the central peak in a rubidium atomic beam. The corresponding spectrum can convindngiy demonstrate the existence of spontaneously generated coherence.
文摘This paper investigates the absorptive reduction and the width narrowing of electromagnetically induced transparency (EIT) in a thin vapour film of A-type atoms confined between two dielectric walls whose thickness is comparable with the wavelength of the probe field. The absorptive lines of the weak probe field exhibit strong reductions and very narrow EIT dips, which mainly results from the velocity slow-down effects and transient behaviour of atoms in a confined system. It is also shown that the lines are modified by the strength of the coupling field and the ratio of L/λ, with L the film thickness and λthe wavelength of the probe field. A simple robust recipe for EIT in a thin medium is achievable in experiment.
基金supported by the National Natural Science Foundation of China(Grants Nos.11204080,11274112,91321101,and 61275215)the Fundamental Research Fund for the Central Universities of China(Grants No.WM1313003)
文摘We present a quantum-theoretical treatment of cavity linewidth narrowing with intracavity electromagnetically in- duced transparency (EIT). By means of intracavity EIT, the photons in the cavity are in the form of cavity polaritons: bright-state polariton and dark-state polariton. Strong coupling of the bright-state polariton to the excited state induces an effect known as vacuum Rabi splitting, whereas the dark-state polariton decoupled from the excited state induces a narrow cavity transmission window. Our analysis would provide a quantum theory of linewidth narrowing with a quantum field pulse.
文摘Inequality in distribution has become an issue of public concern in China. Incomes of the Chinese people have grown year after year ever since the reform and opening era began in the late 1970s. Meanwhile, the income gap between urban and rural residents has widened constantly, from 1.8:1 in the mid-1980s to 3.2:1 in 2003. In a report entitled Analysis and Forecast of China's Social Conditions 2004-2005, experts with the Chinese Academy of Social Sciences listed the widening income gaps as the second most serious of the six problems China is facing. The report notes that such gaps have kept widening not only between individual workers in the same profession but also between workers in different industries and regions. In view of this, the national economic work conference held in early January called for effort to improve the order of income distribution and readjust the distribution of national wealth in an appropriate manner. How to view the problem of inequality in distribution as we see now? How the divide of the rich and the poor affects the improvement of human rights? What should be done to narrow the gap between the rich and the poor? We have dis- cussed these questions with two leading social scientists in China, Sun Guohua, pro- fessor of law at the Renmin University of China and Prof. Hu Angang of Qinghua University, a noted expert in study of the conditions in China.
基金supported by the National Natural Science Foundation of China (Grants Nos. 61875067 and 61178021)。
文摘For a three-level atom, two nondegenerate(even microwave and optical) electric dipole transitions are usually allowed;for either of these, the fluorescence spectra are well-described in terms of spontaneous transitions from a triplet of dressed sublevels to an adjacent lower-lying triplet. When the three dressed sublevels are equally spaced from each other, a remarkable feature known as degenerate cascade fluorescence takes place, which displays a five-peaked structure. We show that a single cavity can make all the spectral lines extremely narrow, whether they arise from cavity-coupled or cavity-free transitions. This effect is based on intrinsic cascade lasing feedback and makes it possible to use a single microwave cavity(even a bad cavity) to narrow the spectral lines in the optical frequency regime.
基金supported by King Abdullah University of Science and Technology(KAUST)Research Funding(KRF)under Award No.ORA-2022-5314Advanced Research Projects Agency-Energy(ARPA-E)No.DE-AR000067+1 种基金the U.S.Department of Energy under Contract No.DE-AC04-94AL85000the American Institute for Manufacturing(AIM)Integrated Photonics.
文摘Stable laser emission with narrow linewidth is of critical importance in many applications,including coherent communications,LIDAR,and remote sensing.In this work,the physics underlying spectral narrowing of self-injection-locked on-chip lasers to Hz-level lasing linewidth is investigated using a composite-cavity structure.Heterogeneously integrated III–V/SiN lasers operating with quantum-dot and quantum-well active regions are analyzed with a focus on the effects of carrier quantum confinement.The intrinsic differences are associated with gain saturation and carrier-induced refractive index,which are directly connected with 0-and 2-dimensional carrier densities of states.Results from parametric studies are presented for tradeoffs involved with tailoring the linewidth,output power,and injection current for different device configurations.Though both quantum-well and quantum-dot devices show similar linewidth-narrowing capabilities,the former emits at a higher optical power in the self-injection-locked state,while the latter is more energy-efficient.Lastly,a multi-objective optimization analysis is provided to optimize the operation and design parameters.For the quantum-well laser,minimizing the number of quantum-well layers is found to decrease the threshold current without significantly reducing the output power.For the quantum-dot laser,increasing the quantum-dot layers or density in each layer increases the output power without significantly increasing the threshold current.These findings serve to guide more detailed parametric studies to produce timely results for engineering design.
基金the National Natural Science Foundation of China(No.61927815)the Natural Science Foundation of Tianjin City(Nos.22JCYBJC01100 and 20JCZDJC00430)+4 种基金the Shijiazhuang Overseas Talents Introduction Project(No.20230004)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202201)Funds for Basic Scientific Research of Hebei University of Technology(No.JBKYTD2201)D.J.acknowledges the support from the Postgraduate Innovation Ability Training Program of Hebei Province(No.CXZZBS2021030)R.P.M.acknowledges the support from the Asian Office of Aerospace Research and Development(AOARD).
文摘This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system.Experimentally,a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%,which is nearly 2.5 times compressed compared with the linewidth of the pump(7.36 kHz).In addition,the theorical analysis shows that at a pump power of 60Wand a coupling mirror reflectivity of 96%,a Stokes output with a linewidth of 1.6 kHz and up to 80%optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity.This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.
基金Project supported by the Key Program of the National Natural Science Foundation of China(No.60836004)the National Natural Science Foundation of China(Nos.61006070,61076025)
文摘The effect of negative bias temperature instability (NBTI) on a single event transient (SET) has been studied in a 130 nm bulk silicon CMOS process based on 3D TCAD device simulations. The investigation shows that NBTI can result in the pulse width and amplitude of SET narrowing when the heavy ion hits the PMOS in the high-input inverter; but NBTI can result in the pulse width and amplitude of SET broadening when the heavy ion hits the NMOS in the low-input inverter. Based on this study, for the first time we propose that the impact of NBTI on a SET produced by the heavy ion hitting the NMOS has already been a significant reliability issue and should be of wide concern, and the radiation hardened design must consider the impact of NBTI on a SET.
基金supported by the State Key Development Program for Basic Research of China (No. 2003CB314901)
文摘Heavy doping of the base in HBTs brings about a bandgap narrowing (BGN) effect, which modifies the intrinsic carrier density and disturbs the band offset, and thus leads to the change of the currents. Based on a thermionic-field-diffusion model that is used to the analyze the performance of an abrupt HBT with a heavydoped base, the conclusion is made that, although the BGN effect makes the currents obviously change due to the modification of the intrinsic carrier density, the band offsets disturbed by the BGN effect should also be taken into account in the analysis of the electrical characteristics of abrupt HBTs. In addition, the BGN effect changes the bias voltage for the onset of Kirk effects.
文摘This study considered whether the narrowing of the upper (broad and wandering) reaches of the Lower Yellow River could result in a reduction in sedimentation and even an increase in channel erosion in both the upper and the lower (narrow and meandering) reaches. Analysis of field data and numerical modeling results both justify the proposal to narrow the channel. A positive correlation was found between channel eroded-area and the channel width. Therefore narrowing under conditions of low flow will reduce the amount of erosion in the reach, which, in turn, will reduce the amount of sediment transported into the lower channel. This will reduce the amount of siltation in the lower reaches of the river. However, narrowing under conditions of high flow with a low concentration of sediment will reduce both the extent of flood attenuation along the narrowed channel and the amount of lateral channel bank collapse, which results in increased flows and less sedimentation in the lower channel, leading to increased erosion. When flows with a high concentration of sediment are released from the Xiaolangdi Reservoir, both the lower narrow channel and the upper channel can transport a large amount of the sediment load. It is concluded that the narrowing of the upper broad channel will result in a reduction in sedimentation, or even in channel erosion, in both the upper and the lower channels if the reservoir is operated such that the volume of sediment added during low flows is balanced by the volume eroded during high flows with a low concentration of sediment.
文摘In this article, we apply the first elliptic function equation to find a new kind of solutions of nonlinear partial differential equations (PDEs) based on the ho- mogeneous balance method, the Jacobi elliptic expansion method and the auxiliary equation method. New exact solutions to the Jacobi elliptic functions of a nonlinear PDE describing pulse narrowing nonlinear transmission lines are given with the aid of computer program, e.g. Maple or Mathematica. Based on Kirchhoff's current law and Kirchhoff's voltage law, the given nonlinear PDE has been derived and can be reduced to a nonlinear ordinary differential equation (ODE) using a simple transformation. The given method in this article is straightforward and concise, and can be applied to other nonlinear PDEs in mathematical physics. Further results may be obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.11988101,12203069,12041302,and 12203045)the National SKA Program of China(Grant No.2022SKA0130100)+8 种基金the Office of the Leading Group for Cyberspace Affairs,CAS(Grant No.CAS-WX2023PY0102)the CAS Youth Interdisciplinary Team and the Foundation of Guizhou Provincial Education Department(Grant No.KY(2023)059)support from the National Natural Science Foundation of China(Grant Nos.11988101 and 12041303)the CAS Youth Interdisciplinary Team,the Youth Innovation Promotion Association CAS(Grant No.2021055)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupported by the National Natural Science Foundation of China(Grant No.12203045)the Leading Innovation and Entrepreneurship Team of Zhejiang Province of China(Grant No.2023R01008)the Key R&D Program of Zhejiang(Grant No.2024SSYS0012)supported by the China Scholarship Council(Grant No.202304910441)。
文摘Fast radio bursts(FRBs)are short-duration radio transients with mysterious origins.Since their uncertainty,there are very few FRBs observed by different instruments simultaneously.This study presents a detailed analysis of a burst from FRB 20190520B observed by FAST and Parkes at the same time.The spectrum of this individual burst ended at the upper limit of the FAST frequency band and was simultaneously detected by the Parkes telescope in the 1.5–1.8GHz range.By employing spectral energy distribution(SED)and spectral sharpness methods,we confirmed the presence of narrow-band radiation in FRB 20190520B,which is crucial for understanding its radiation mechanisms.Our findings support the narrow-band characteristics that most repeaters exhibit.This work also highlights the necessity of continued multiband observations to explore its periodicity and frequency-dependent properties,contributing to an in-depth understanding of FRB phenomena.
文摘A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz.
基金supported by the National Key Research and Development Program of China (Grant No.2017YFA0302901)the Strategic Priority Research Program,the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No.XDB33010100)+3 种基金the National Natural Science Foundation of China (Grant Nos.12134018,11921004,and 11634015)the Foundation of Quantum Science Center of Guangdong–Hong Kong–Macao Greater Bay Area,China (Grant No.QD2301005)the Postdoctoral Science Foundation of China (Grant No.2021M693370)the Synergetic Extreme Condition User Facility (SECUF)。
文摘We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金supported by the National Key R&D Program of China,No.2022YFB4601201.
文摘The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.