In history,every media development has contributed to a change in human beings’perception of reality and in the way we have acted in that reality.Orality,literacy,the printing press,and electricity have done it,and s...In history,every media development has contributed to a change in human beings’perception of reality and in the way we have acted in that reality.Orality,literacy,the printing press,and electricity have done it,and so is digital and social media.Reticularity,horizontalization,distributed and informal learning are some of the keywords of this era.The change in perception of natural disaster management through social media(Twitter)both in real time and in the following months is at the centre of the reflection of the work.To study the opinions of Italians regarding the natural disaster of Central Italy in 2016,the authors scraped Italian language Tweets from the web on the subject of earthquakes.They collected all of the Tweets containing the hashtag“terremoto”for nine months(from August 2016 to May 2017).Data analytics was performed with Twitter of R statistics and has resulted in a large corpus to which the authors have applied multivariate techniques in order to identify the contents and the sentiments behind the shared comments.The results show how social media relations and perception change are complex and articulated and can be one of the ways to improve communication activities for prevention.展开更多
Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicato...Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.展开更多
Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with n...Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with natural hazards,caused by earthquakes,floods and volcanic eruptions,and troubles unlikely come solely from the action of nature.Disasters threatening the human race can be caused also by people themselves.Both types of disasters cause vast human suffering,at the same time destroying cultural heritage as well,that has the function of determining the identity of social communities.These sufferings should be added to those that can be determined only by in-depth analyses which are derived from the synergy of natural forces and mistaken choices made by the humans,when it comes to their habitat.The proposed strategic plan for protection of built heritage in emergency situations may become the powerful catalyst for the process of revitalization by which the social tissue of community is maintained and restored,creating the symbol of resistance by which it endures each and every natural element and evil men behaviour.展开更多
Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable...Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.展开更多
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas...Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.展开更多
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien...Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera...Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.展开更多
This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protec...This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protection function,including wave energy dissipation,storm surge damping,tsunami mitigation,adjustment to sea level rise and wind speed reduction,which are sys-tematically summarized in this study.Moreover,the study analyzes the extensive physical models,based on indoor flume experi-ments and numerical models,that consider the interaction between mangroves and hydrodynamics,to help our understanding of mangrove-hydrodynamic interactions.Additionally,quantitative approaches for valuing coastal protection services provided by man-groves,including index-based and process-resolving approaches,are introduced in detail.Finally,we point out the limitations of previous studies,indicating that efforts are still required for obtaining more long-term field observations during extreme weather events,to create more real mangrove models for physical experiments,and to develop numerical models that consider the flexible properties of mangroves to better predict wave propagation in mangroves having complex morphology and structures.展开更多
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d...According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.展开更多
The broke of a tailings dam from Vale S.A. destroyed a gigantic area killing 270 persons in Brumadinho/Brazil. Organizing activities after a mass disaster is a complex process that requires the involvement of many peo...The broke of a tailings dam from Vale S.A. destroyed a gigantic area killing 270 persons in Brumadinho/Brazil. Organizing activities after a mass disaster is a complex process that requires the involvement of many people and resources in the laboratory. To DNA identification of the victims, a daunting work had to be made by DNA laboratory staff in a collaborative effort with many partners. Efforts to implement good practice guidelines in Disaster Victim Identification (DVI) have revealed several important aspects that need to change in the forensic DNA laboratory. This article highlights the challenges of implementing DVI best practice guidelines in resource-poor settings, but with professionals from different sectors engaged in the same goal of briefly identifying victims and helping families and society.展开更多
The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coast...The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.展开更多
Togo is facing significant climate challenges that have profound consequences for its environment, economy, and population. This study provides an overview of various climate phenomena affecting Togo and highlights po...Togo is facing significant climate challenges that have profound consequences for its environment, economy, and population. This study provides an overview of various climate phenomena affecting Togo and highlights potential adaptation strategies. We used the inclusion and exclusion criteria (PRISMA) to search both French and English articles on climate change-related disaster risk events in Togo through Google Scholar, Directory of Open Access Journals (DOAJ), and PubMed databases using the keywords “Climate Change”, “Floods”, “Drought”, “Coastal erosion”, “High winds”, “Epidemy”, Heatwaves”, and “Air pollution”. Twenty-five articles from 2000-2023 were included in this study after applying different criteria. Droughts, floods, coastal erosion, food and crop productivity loss, heatwaves, spread of vector-borne diseases, air pollution, and high winds are among the climate phenomena discussed. These challenges are driven by climate change, altering precipitation patterns, increasing temperatures, and rising sea levels. Drought, floods, coastal erosion, loss of food and crop productivity, spread of vector-borne diseases, air pollution and heatwaves are the most climate risks experienced by Togo. Drought contributes to decreased plant cover, water scarcity, and changes in the water and energy balance. Floods cause property damage, health risks, and disruptions to livelihoods. Coastal erosion threatens coastal communities, infrastructure, and ecosystems. Adaptation strategies include early warning systems, improved water management, sustainable agriculture, urban and health planning, and greenhouse gas emissions reduction. Drought-resistant crops, mosquito control, and clean energy adoption are essential.展开更多
DNA guanine(G)-quadruplexes(G4s)are unique secondary structures formed by two or more stacked Gtetrads in G-rich DNA sequences.These structures have been found to play a crucial role in highly transcribed genes,especi...DNA guanine(G)-quadruplexes(G4s)are unique secondary structures formed by two or more stacked Gtetrads in G-rich DNA sequences.These structures have been found to play a crucial role in highly transcribed genes,especially in cancer-related oncogenes,making them attractive targets for cancer therapeutics.Significantly,targeting oncogene promoter G4 structures has emerged as a promising strategy to address the challenge of undruggable and drug-resistant proteins,such as MYC,BCL2,KRAS,and EGFR.Natural products have long been an important source of drug discovery,particularly in the fields of cancer and infectious diseases.Noteworthy progress has recently been made in the discovery of naturally occurring DNA G4-targeting drugs.Numerous DNA G4s,such as MYC-G4,BCL2-G4,KRAS-G4,PDGFR-b-G4,VEGF-G4,and telomeric-G4,have been identified as potential targets of natural products,including berberine,telomestatin,quindoline,sanguinarine,isaindigotone,and many others.Herein,we summarize and evaluate recent advancements in natural and nature-derived DNA G4 binders,focusing on understanding the structural recognition of DNA G4s by small molecules derived from nature.We also discuss the challenges and opportunities associated with developing drugs that target DNA G4s.展开更多
In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foun...In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters.展开更多
A new United Nations initiative aims to ensure that advanced digital technologies in fields such as artificial intelligence(AI)boost resilience to natural hazards and reduce disaster risks.
Currently a technique widely used for gold extraction is mercury by amalgamation technique, the tailing produced pollutes water of all kinds, so it is necessary to develop a form of selective mitigation, for which it ...Currently a technique widely used for gold extraction is mercury by amalgamation technique, the tailing produced pollutes water of all kinds, so it is necessary to develop a form of selective mitigation, for which it is necessary to use complexing agents based on calixarene functionalized with mercury sequestering agents. These are immobilized by adding supports based on natural silica to form polymers and make them insoluble in all types of solvents, so that they can be used as an extractor and at the same time regenerate to their original properties for continuous reuse.展开更多
Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological metho...Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.展开更多
This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation...This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.展开更多
Climate services (CS) are crucial for mitigating and managing the impacts and risks associated with climate-induced disasters. While evidence over the past decade underscores their effectiveness across various domains...Climate services (CS) are crucial for mitigating and managing the impacts and risks associated with climate-induced disasters. While evidence over the past decade underscores their effectiveness across various domains, particularly agriculture, to maximize their potential, it is crucial to identify emerging priority areas and existing research gaps for future research agendas. As a contribution to this effort, this paper employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to review the state-of-the-art in the field of climate services for disaster risk management. A comprehensive search across five literature databases combined with a snowball search method using ResearchRabbit was conducted and yielded 242 peer-reviewed articles, book sections, and reports over 2013-2023 after the screening process. The analysis revealed flood, drought, and food insecurity as major climate-related disasters addressed in the reviewed literature. Major climate services addressed included early warning systems, (sub)seasonal forecasts and impact-based warnings. Grounded in the policy processes’ theoretical perspective, the main focus identified and discussed three prevailing policy-oriented priority areas: 1) development of climate services, 2) use-adoption-uptake, and 3) evaluation of climate services. In response to the limitations of the prevalent supply-driven and top-down approach to climate services promotion, co-production emerges as a cross-cutting critical aspect of the identified priority areas. Despite the extensive research in the field, more attention is needed, particularly pronounced in the science-policy interface perspective, which in practice bridges scientific knowledge and policy decisions for effective policy processes. This perspective offers a valuable analytical lens as an entry point for further investigation. Hence, future research agendas would generate insightful evidence by scrutinizing this critical aspect given its importance to institutions and climate services capacity, to better understand intricate facets of the development and the integration of climate services into disaster risk management.展开更多
文摘In history,every media development has contributed to a change in human beings’perception of reality and in the way we have acted in that reality.Orality,literacy,the printing press,and electricity have done it,and so is digital and social media.Reticularity,horizontalization,distributed and informal learning are some of the keywords of this era.The change in perception of natural disaster management through social media(Twitter)both in real time and in the following months is at the centre of the reflection of the work.To study the opinions of Italians regarding the natural disaster of Central Italy in 2016,the authors scraped Italian language Tweets from the web on the subject of earthquakes.They collected all of the Tweets containing the hashtag“terremoto”for nine months(from August 2016 to May 2017).Data analytics was performed with Twitter of R statistics and has resulted in a large corpus to which the authors have applied multivariate techniques in order to identify the contents and the sentiments behind the shared comments.The results show how social media relations and perception change are complex and articulated and can be one of the ways to improve communication activities for prevention.
基金National Natural Science Foundation of China(Nos.42171444,42301516)Beijing Natural Science Foundation Project-Municipal Education Commission Joint Fund Project(No.KZ202110016021)Beijing Municipal Education Commission Scientific Research Project-Science and Technology Plan General Project(No.KM202110016005).
文摘Natural disaster risk monitoring is an important task for disaster prevention and reduction.In the case of immovable cultural relics,however,the feedback mechanism,risk factors,monitoring logic,and monitoring indicators of natural disaster risk monitoring are complex.How to achieve intelligent perception and monitoring of natural disaster risk for immovable cultural relics has always been a focus and a challenge for researchers.Based on the analysis of the concepts and issues related to the natural disaster risk of immovable cultural relics,this paper proposes a framework for natural disaster risk monitoring for immovable cultural relics based on the digital twin.This framework focuses on risk monitoring,including the physical entities of natural disaster risk for immovable cultural relics,monitoring indicators,and virtual entity construction.A platform for monitoring the natural disaster risk of immovable cultural relics is proposed.Using the Puzhou Ancient City Site as a test bed,the proposed concept can be used for monitoring the natural disaster risk of immovable cultural relics at different scales.
文摘Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with natural hazards,caused by earthquakes,floods and volcanic eruptions,and troubles unlikely come solely from the action of nature.Disasters threatening the human race can be caused also by people themselves.Both types of disasters cause vast human suffering,at the same time destroying cultural heritage as well,that has the function of determining the identity of social communities.These sufferings should be added to those that can be determined only by in-depth analyses which are derived from the synergy of natural forces and mistaken choices made by the humans,when it comes to their habitat.The proposed strategic plan for protection of built heritage in emergency situations may become the powerful catalyst for the process of revitalization by which the social tissue of community is maintained and restored,creating the symbol of resistance by which it endures each and every natural element and evil men behaviour.
基金partially funded by Sao Paulo Research Foundation(FAPESP),Brazil,grant numbers#2015/18808-0,#2018/23064-8,#2019/23382-2.
文摘Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.
基金supported by the National Natural Science Foundation of China(52003113,31900950,82102334,82002313,82072444)the National Key Research&Development Program of China(2018YFC2001502,2018YFB1105705)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010745,2020A1515110356,2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190808120405672)the Key Program of the National Natural Science Foundation of Zhejiang Province(LZ22C100001)the Natural Science Foundation of Shanghai(20ZR1469800)the Integration Innovation Fund of Shanghai Jiao Tong University(2021JCPT03),the Science and Technology Projects of Guangzhou City(202102020359)the Zigong Key Science and Technology Plan(2022ZCNKY07).SXC thanks the financial support under the Startup Grant of the University of Chinese Academy of Sciences(WIUCASQD2021026).HW thanks the Futian Healthcare Research Project(FTWS2022013)the financial support of China Postdoctoral Science Foundation(2021TQ0118).SL thanks the financial support of China Postdoctoral Science Foundation(2022M721490).
文摘Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
基金The financial supports from the National Natural Science Foundation of China (22178059, 22208054 and 22072019)Natural Science Foundation of Fujian Province, China (2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co., Ltd. (ZHQZKJ-19-F-ZS0076)Qingyuan Innovation Laboratory (00121002)
文摘Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
文摘Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.
基金funded by the National Key R&D Program of China(No.2023YFC3007900)the Young Scientists Fund of the National Natural Science Foundation of China(No.42106204)+2 种基金the Jiangsu Basic Research Program(Natural Science Foundation)(No.BK20220082)the National Natural Science Foundation of China(No.52271271)the Major Science&Technology Projects of the Ministry of Water Resources(No.SKS-2022025).
文摘This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protection function,including wave energy dissipation,storm surge damping,tsunami mitigation,adjustment to sea level rise and wind speed reduction,which are sys-tematically summarized in this study.Moreover,the study analyzes the extensive physical models,based on indoor flume experi-ments and numerical models,that consider the interaction between mangroves and hydrodynamics,to help our understanding of mangrove-hydrodynamic interactions.Additionally,quantitative approaches for valuing coastal protection services provided by man-groves,including index-based and process-resolving approaches,are introduced in detail.Finally,we point out the limitations of previous studies,indicating that efforts are still required for obtaining more long-term field observations during extreme weather events,to create more real mangrove models for physical experiments,and to develop numerical models that consider the flexible properties of mangroves to better predict wave propagation in mangroves having complex morphology and structures.
基金National Key Research and Development Program of China(No.2022YFC3803000).
文摘According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.
文摘The broke of a tailings dam from Vale S.A. destroyed a gigantic area killing 270 persons in Brumadinho/Brazil. Organizing activities after a mass disaster is a complex process that requires the involvement of many people and resources in the laboratory. To DNA identification of the victims, a daunting work had to be made by DNA laboratory staff in a collaborative effort with many partners. Efforts to implement good practice guidelines in Disaster Victim Identification (DVI) have revealed several important aspects that need to change in the forensic DNA laboratory. This article highlights the challenges of implementing DVI best practice guidelines in resource-poor settings, but with professionals from different sectors engaged in the same goal of briefly identifying victims and helping families and society.
基金supported by the National Natural Science Foundation of China(42293261)projects of the China Geological Survey(DD20230091,DD20189506,DD20211301)+1 种基金the 2024 Qinhuangdao City level Science and Technology Plan Self-Financing Project(Research on data processing methods for wave buoys in nearshore waters)the project of Hebei University of Environmental Engineering(GCZ202301)。
文摘The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.
文摘Togo is facing significant climate challenges that have profound consequences for its environment, economy, and population. This study provides an overview of various climate phenomena affecting Togo and highlights potential adaptation strategies. We used the inclusion and exclusion criteria (PRISMA) to search both French and English articles on climate change-related disaster risk events in Togo through Google Scholar, Directory of Open Access Journals (DOAJ), and PubMed databases using the keywords “Climate Change”, “Floods”, “Drought”, “Coastal erosion”, “High winds”, “Epidemy”, Heatwaves”, and “Air pollution”. Twenty-five articles from 2000-2023 were included in this study after applying different criteria. Droughts, floods, coastal erosion, food and crop productivity loss, heatwaves, spread of vector-borne diseases, air pollution, and high winds are among the climate phenomena discussed. These challenges are driven by climate change, altering precipitation patterns, increasing temperatures, and rising sea levels. Drought, floods, coastal erosion, loss of food and crop productivity, spread of vector-borne diseases, air pollution and heatwaves are the most climate risks experienced by Togo. Drought contributes to decreased plant cover, water scarcity, and changes in the water and energy balance. Floods cause property damage, health risks, and disruptions to livelihoods. Coastal erosion threatens coastal communities, infrastructure, and ecosystems. Adaptation strategies include early warning systems, improved water management, sustainable agriculture, urban and health planning, and greenhouse gas emissions reduction. Drought-resistant crops, mosquito control, and clean energy adoption are essential.
基金supported by the National Institutes of Health(R01CA177585,U01CA240346,and R01CA153821)(DY)the Purdue Center for Cancer Research(P30CA023168)+2 种基金the National Natural Science Foundation of China(82173707 and 82322065)the Program for Jiangsu Province Innovative Research Scholar(JSSCRC2021512)the“Double First-Class”University Project(CPUQNJC22_08).
文摘DNA guanine(G)-quadruplexes(G4s)are unique secondary structures formed by two or more stacked Gtetrads in G-rich DNA sequences.These structures have been found to play a crucial role in highly transcribed genes,especially in cancer-related oncogenes,making them attractive targets for cancer therapeutics.Significantly,targeting oncogene promoter G4 structures has emerged as a promising strategy to address the challenge of undruggable and drug-resistant proteins,such as MYC,BCL2,KRAS,and EGFR.Natural products have long been an important source of drug discovery,particularly in the fields of cancer and infectious diseases.Noteworthy progress has recently been made in the discovery of naturally occurring DNA G4-targeting drugs.Numerous DNA G4s,such as MYC-G4,BCL2-G4,KRAS-G4,PDGFR-b-G4,VEGF-G4,and telomeric-G4,have been identified as potential targets of natural products,including berberine,telomestatin,quindoline,sanguinarine,isaindigotone,and many others.Herein,we summarize and evaluate recent advancements in natural and nature-derived DNA G4 binders,focusing on understanding the structural recognition of DNA G4s by small molecules derived from nature.We also discuss the challenges and opportunities associated with developing drugs that target DNA G4s.
基金supported by the Chongqing Postdoctoral Special Support(No.2022CQBSHTB1022)the Autonomous General Projects of State Key Laboratory of Coal Mine Disaster Dynamics and Control(No.2011DA105287-MS202209)the State Key Laboratory of Coal Mine Disaster Dynamics and Control Faces the 2030 project(No.2011DA105287-MX2030-202002).
文摘In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters.
文摘A new United Nations initiative aims to ensure that advanced digital technologies in fields such as artificial intelligence(AI)boost resilience to natural hazards and reduce disaster risks.
文摘Currently a technique widely used for gold extraction is mercury by amalgamation technique, the tailing produced pollutes water of all kinds, so it is necessary to develop a form of selective mitigation, for which it is necessary to use complexing agents based on calixarene functionalized with mercury sequestering agents. These are immobilized by adding supports based on natural silica to form polymers and make them insoluble in all types of solvents, so that they can be used as an extractor and at the same time regenerate to their original properties for continuous reuse.
基金support by Melbourne International Research Scholarship (MIRS)。
文摘Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.
文摘This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses.
文摘Climate services (CS) are crucial for mitigating and managing the impacts and risks associated with climate-induced disasters. While evidence over the past decade underscores their effectiveness across various domains, particularly agriculture, to maximize their potential, it is crucial to identify emerging priority areas and existing research gaps for future research agendas. As a contribution to this effort, this paper employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to review the state-of-the-art in the field of climate services for disaster risk management. A comprehensive search across five literature databases combined with a snowball search method using ResearchRabbit was conducted and yielded 242 peer-reviewed articles, book sections, and reports over 2013-2023 after the screening process. The analysis revealed flood, drought, and food insecurity as major climate-related disasters addressed in the reviewed literature. Major climate services addressed included early warning systems, (sub)seasonal forecasts and impact-based warnings. Grounded in the policy processes’ theoretical perspective, the main focus identified and discussed three prevailing policy-oriented priority areas: 1) development of climate services, 2) use-adoption-uptake, and 3) evaluation of climate services. In response to the limitations of the prevalent supply-driven and top-down approach to climate services promotion, co-production emerges as a cross-cutting critical aspect of the identified priority areas. Despite the extensive research in the field, more attention is needed, particularly pronounced in the science-policy interface perspective, which in practice bridges scientific knowledge and policy decisions for effective policy processes. This perspective offers a valuable analytical lens as an entry point for further investigation. Hence, future research agendas would generate insightful evidence by scrutinizing this critical aspect given its importance to institutions and climate services capacity, to better understand intricate facets of the development and the integration of climate services into disaster risk management.