This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through...This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
In this article, we present a method for solving the Navier-Stokes equations. They started by finding an analytical solution of the nonlinear convective term . They solved the Navier Stokes equations as a differential...In this article, we present a method for solving the Navier-Stokes equations. They started by finding an analytical solution of the nonlinear convective term . They solved the Navier Stokes equations as a differential equation. Finally they made a numerical and experimental verification which shows that the two solutions converge, after having found the analytical solution. Underlying principles study, those various phenomena in universe are interconnected logic for the development of new technologies as an example: news engines, applied fluids mechanics. This study’s applications are exceptionally wide such as External aerodynamics: airplane, glider, missile, launcher, space probe, automobile, flying insects, buildings and bridges;Hydraulics: pipes, open channels, waves, rivers, blood circulation;meteodynamics: meteorology, climatology.展开更多
Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibi...Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibit a saddle point structure. To achieve this task, a Newton-based root-finding algorithm is usually employed which in turn necessitates to solve a saddle point system at every Newton iteration. The involved linear systems being large scale and ill-conditioned, effective linear solvers must be implemented. Here, we develop and test several methods for solving the saddle point systems, considering in particular the LU factorization, as direct approach, and the preconditioned generalized minimal residual (ΡGMRES) solver, an iterative approach. We apply the various solvers within the root-finding algorithm for Flow over backward facing step systems. The particularity of Flow over backward facing step system is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion, making the system of differential equations particularly stiff. We assess the performance of the direct and iterative solvers in terms of computational time, numbers of Newton iterations and time steps.展开更多
In this article, we consider the free boundary value problem of 3D isentropic compressible Navier-Stokes equations. A blow-up criterion in terms of the maximum norm of gradients of velocity is obtained for the spheric...In this article, we consider the free boundary value problem of 3D isentropic compressible Navier-Stokes equations. A blow-up criterion in terms of the maximum norm of gradients of velocity is obtained for the spherically symmetric strong solution in terms of the regularity estimates near the symmetric center and the free boundary respectively.展开更多
This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn i...This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.展开更多
In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-di...In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum,across which the density changes discontinuosly.Smoothness of the solutions and the uniqueness of the weak solutions are also discussed.The present paper extends results in Luo-Xin-Yang[12] to the jump boundary conditions case.展开更多
We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditi...We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.展开更多
文摘This article gives a general model using specific periodic special functions, that is, degenerate elliptic Weierstrass P functions composed with the LambertW function, whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of arbitrary r balls of the 3-Torus. The continuity equation is satisfied together with spatially periodic boundary conditions. The yicomponent forcing terms consist of a function F as part of its expression that is arbitrarily small in an r ball where it is associated with a singular forcing expression both for inviscid and viscous cases. As a result, a significant simplification occurs with a v3(vifor all velocity components) only governing PDE resulting. The extension of three restricted subspaces in each of the principal directions in the Cartesian plane is shown as the Cartesian product ℋ=Jx,t×Jy,t×Jz,t. On each of these subspaces vi,i=1,2,3is continuous and there exists a linear independent subspace associated with the argument of the W function. Here the 3-Torus is built up from each compact segment of length 2R on each of the axes on the 3 principal directions x, y, and z. The form of the scaled velocities for non zero scaled δis related to the definition of the W function such that e−W(ξ)=W(ξ)ξwhere ξdepends on t and proportional to δ→0for infinite time t. The ratio Wξis equal to 1, making the limit δ→0finite and well defined. Considering r balls where the function F=(x−ai)2+(y−bi)2+(z−ci)2−ηset equal to −1e+rwhere r>0. is such that the forcing is singular at every distance r of centres of cubes each containing an r-ball. At the centre of the balls, the forcing is infinite. The main idea is that a system of singular initial value problems with infinite forcing is to be solved for where the velocities are shown to be locally Hölder continuous. It is proven that the limit of these singular problems shifts the finite time blowup time ti∗for first and higher derivatives to t=∞thereby indicating that there is no finite time blowup. Results in the literature can provide a systematic approach to study both large space and time behaviour for singular solutions to the Navier Stokes equations. Among the references, it has been shown that mathematical tools can be applied to study the asymptotic properties of solutions.
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
文摘In this article, we present a method for solving the Navier-Stokes equations. They started by finding an analytical solution of the nonlinear convective term . They solved the Navier Stokes equations as a differential equation. Finally they made a numerical and experimental verification which shows that the two solutions converge, after having found the analytical solution. Underlying principles study, those various phenomena in universe are interconnected logic for the development of new technologies as an example: news engines, applied fluids mechanics. This study’s applications are exceptionally wide such as External aerodynamics: airplane, glider, missile, launcher, space probe, automobile, flying insects, buildings and bridges;Hydraulics: pipes, open channels, waves, rivers, blood circulation;meteodynamics: meteorology, climatology.
文摘Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibit a saddle point structure. To achieve this task, a Newton-based root-finding algorithm is usually employed which in turn necessitates to solve a saddle point system at every Newton iteration. The involved linear systems being large scale and ill-conditioned, effective linear solvers must be implemented. Here, we develop and test several methods for solving the saddle point systems, considering in particular the LU factorization, as direct approach, and the preconditioned generalized minimal residual (ΡGMRES) solver, an iterative approach. We apply the various solvers within the root-finding algorithm for Flow over backward facing step systems. The particularity of Flow over backward facing step system is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion, making the system of differential equations particularly stiff. We assess the performance of the direct and iterative solvers in terms of computational time, numbers of Newton iterations and time steps.
基金supported by the NNSFC(11171228,11231006,and 11225102)NSFC-RGC Grant 11461161007the Key Project of Beijing Municipal Education Commission No.CIT&TCD20140323
文摘In this article, we consider the free boundary value problem of 3D isentropic compressible Navier-Stokes equations. A blow-up criterion in terms of the maximum norm of gradients of velocity is obtained for the spherically symmetric strong solution in terms of the regularity estimates near the symmetric center and the free boundary respectively.
基金supported in part by the NSF of China (10571024,10871040)the grant of Prominent Youth of Henan Province of China (0412000100)
文摘This article is concerned with the existence of maximal attractors in Hi (i = 1, 2, 4) for the compressible Navier-Stokes equations for a polytropic viscous heat conductive ideal gas in bounded annular domains Ωn in Rn(n = 2,3). One of the important features is that the metric spaces H(1), H(2), and H(4) we work with are three incomplete metric spaces, as can be seen from the constraints θ 〉 0 and u 〉 0, with θand u being absolute temperature and specific volume respectively. For any constants δ1, δ2……,δ8 verifying some conditions, a sequence of closed subspaces Hδ(4) H(i) (i = 1, 2, 4) is found, and the existence of maximal (universal) attractors in Hδ(i) (i = 1.2.4) is established.
文摘In this paper,we study a one-dimensional motion of viscous gas near vacuum. We are interested in the case that the gas is in contact with the vacuum at a finite interval. This is a free boundary problem for the one-dimensional isentropic Navier-Stokes equations, and the free boundaries are the interfaces separating the gas from vacuum,across which the density changes discontinuosly.Smoothness of the solutions and the uniqueness of the weak solutions are also discussed.The present paper extends results in Luo-Xin-Yang[12] to the jump boundary conditions case.
基金supported in part by the National Science Foundation under Grants DMS-0807551, DMS-0720925, and DMS-0505473the Natural Science Foundationof China (10728101)supported in part by EPSRC grant EP/F029578/1
文摘We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition.