This paper presents flight results and lessons learned from the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted by the German Space Operations Center in the frame of the Swedish PRISMA technology ...This paper presents flight results and lessons learned from the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted by the German Space Operations Center in the frame of the Swedish PRISMA technology demonstration mission. PR1SMA involves two fully autonomous formation-flying spacecraft which have been launched in June 2010 in a dawn/dusk orbit at an altitude of 750 km. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on carrier-phase differential GPS (Global Positioning System), relative eccentricity/inclination vectors and impulsive maneuvering are validated and tuned in orbit to achieve centimeter accurate real-time relative navigation, reliable formation keeping at the meter level and flexible formation reconfiguration capabilities. The technologies demonstrated within SAFE are considered as key precursors of future distributed satellite systems for unrivaled remote sensing and space exploration.展开更多
On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the g...On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the guidance,navigation,and control(GNC)system performance,and determine the critical operation and lander parameters.The high-fidelity models of the Mars atmosphere,parachute,and lander system that are incorporated into the simulator are described.Using the developed simulator,simulations of the Tianwen-1 lander EDL are performed.The results indicate that the simulator is valid,and the GNC system of the Tianwen-1 lander exhibits excellent performance.展开更多
The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity o...The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity of the lander,perform the avoidance maneuver,and guarantee a soft touchdown.The PDL phase overcame many challenges:performing the divert maneuver to avoid collision with the CBP while simultaneously avoiding large-scale hazards;slowing the descent from approximately 95 to 0 m/s;performing the precise hazard-avoidance maneuver;and placing the lander gently and safely on the surface of Mars.The architecture and algorithms of the guidance,navigation,and control system for the PDL phase were designed;its execution resulted in Tianwen-1’s successful touchdown in the morning of 15 May 2021.Consequently,the Tianwen-1 mission achieved a historic autonomous landing with simultaneous hazard and CBP avoidance.展开更多
The asteroid explorer Hayabusa2 carries multiple rovers and separates them to land on an asteroid surface.One of these rovers,called MASCOT,was developed under the international cooperation between the Deutsches Zentr...The asteroid explorer Hayabusa2 carries multiple rovers and separates them to land on an asteroid surface.One of these rovers,called MASCOT,was developed under the international cooperation between the Deutsches Zentrum f¨ur Luft-und Raumfahrt and the Centre National d’Etudes Spatiales.This rover was designed to be separated to land and perform several missions on an asteroid surface.To support these missions,the mother ship Hayabusa2 must separate this rover at a low altitude of approximately 50 m and hover at approximately 3 km after separation to achieve are liable communication link with MASCOT.Because the on-board guidance,navigation,and control(GNC)does not have an autonomous hovering function,this hovering operation is performed by ground-based control.This paper introduces the GNC operation scheme for this hovering operation and reports on its flight results.展开更多
The Japanese interplanetary probe Hayabusa2 was launched on December 3,2014 and the probe arrived at the vicinity of asteroid 162173 Ryugu on June 27,2018.During its 1.4 years of asteroid proximity phase,the probe suc...The Japanese interplanetary probe Hayabusa2 was launched on December 3,2014 and the probe arrived at the vicinity of asteroid 162173 Ryugu on June 27,2018.During its 1.4 years of asteroid proximity phase,the probe successfully accomplished numbers of record-breaking achievements including two touchdowns and one artificial cratering experiment,which are highly expected to have secured surface and subsurface samples from the asteroid inside its sample container for the first time in history.The Hayabusa2 spacecraft was designed not to orbit but to hover above the asteroid along the sub Earth line.This orbital and geometrical configuration allows the spacecraft to utilize its high-gain antennas for telecommunication with the ground station on Earth while pointing its scientific observation and navigation sensors at the asteroid.This paper focuses on the regular station-keeping operation of Hayabusa2,which is called“home position”(HP)-keeping operation.First,together with the spacecraft design,an operation scheme called HP navigation(HPNAV),which includes a daily trajectory control and scientific observations as regular activities,is introduced.Following the description on the guidance,navigation,and control design as well as the framework of optical and radiometric navigation,the results of the HP-keeping operation including trajectory estimation and delta-V planning during the entire asteroid proximity phase are summarized and evaluated as a first report.Consequently,this paper states that the HP.keeping operation in the framework of HPNAV had succeeded without critical incidents,and the number of trajectory control delta-V was planned fficiently throughout the period.展开更多
文摘This paper presents flight results and lessons learned from the Spaceborne Autonomous Formation Flying Experiment (SAFE) conducted by the German Space Operations Center in the frame of the Swedish PRISMA technology demonstration mission. PR1SMA involves two fully autonomous formation-flying spacecraft which have been launched in June 2010 in a dawn/dusk orbit at an altitude of 750 km. SAFE represents one of the first demonstrations in low Earth orbit of an advanced guidance, navigation and control system for dual-spacecraft formations. Innovative techniques based on carrier-phase differential GPS (Global Positioning System), relative eccentricity/inclination vectors and impulsive maneuvering are validated and tuned in orbit to achieve centimeter accurate real-time relative navigation, reliable formation keeping at the meter level and flexible formation reconfiguration capabilities. The technologies demonstrated within SAFE are considered as key precursors of future distributed satellite systems for unrivaled remote sensing and space exploration.
基金This work was supported by the National Natural Science Foundation of China(No.61803028)and Civil Aerospace Advance Research Project.
文摘On May 15,2021,the Tianwen-1 lander successfully touched down on the surface of Mars.To ensure the success of the landing mission,an end-to-end Mars entry,descent,and landing(EDL)simulator is developed to assess the guidance,navigation,and control(GNC)system performance,and determine the critical operation and lander parameters.The high-fidelity models of the Mars atmosphere,parachute,and lander system that are incorporated into the simulator are described.Using the developed simulator,simulations of the Tianwen-1 lander EDL are performed.The results indicate that the simulator is valid,and the GNC system of the Tianwen-1 lander exhibits excellent performance.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61673057 and 61803028)and the Civil Aerospace Advance Research Project.
文摘The powered-descent landing(PDL)phase of the Tianwen-1 mission began with composite backshell–parachute(CBP)separation and ended with landing-rover touchdown.The main tasks of this phase were to reduce the velocity of the lander,perform the avoidance maneuver,and guarantee a soft touchdown.The PDL phase overcame many challenges:performing the divert maneuver to avoid collision with the CBP while simultaneously avoiding large-scale hazards;slowing the descent from approximately 95 to 0 m/s;performing the precise hazard-avoidance maneuver;and placing the lander gently and safely on the surface of Mars.The architecture and algorithms of the guidance,navigation,and control system for the PDL phase were designed;its execution resulted in Tianwen-1’s successful touchdown in the morning of 15 May 2021.Consequently,the Tianwen-1 mission achieved a historic autonomous landing with simultaneous hazard and CBP avoidance.
文摘The asteroid explorer Hayabusa2 carries multiple rovers and separates them to land on an asteroid surface.One of these rovers,called MASCOT,was developed under the international cooperation between the Deutsches Zentrum f¨ur Luft-und Raumfahrt and the Centre National d’Etudes Spatiales.This rover was designed to be separated to land and perform several missions on an asteroid surface.To support these missions,the mother ship Hayabusa2 must separate this rover at a low altitude of approximately 50 m and hover at approximately 3 km after separation to achieve are liable communication link with MASCOT.Because the on-board guidance,navigation,and control(GNC)does not have an autonomous hovering function,this hovering operation is performed by ground-based control.This paper introduces the GNC operation scheme for this hovering operation and reports on its flight results.
文摘The Japanese interplanetary probe Hayabusa2 was launched on December 3,2014 and the probe arrived at the vicinity of asteroid 162173 Ryugu on June 27,2018.During its 1.4 years of asteroid proximity phase,the probe successfully accomplished numbers of record-breaking achievements including two touchdowns and one artificial cratering experiment,which are highly expected to have secured surface and subsurface samples from the asteroid inside its sample container for the first time in history.The Hayabusa2 spacecraft was designed not to orbit but to hover above the asteroid along the sub Earth line.This orbital and geometrical configuration allows the spacecraft to utilize its high-gain antennas for telecommunication with the ground station on Earth while pointing its scientific observation and navigation sensors at the asteroid.This paper focuses on the regular station-keeping operation of Hayabusa2,which is called“home position”(HP)-keeping operation.First,together with the spacecraft design,an operation scheme called HP navigation(HPNAV),which includes a daily trajectory control and scientific observations as regular activities,is introduced.Following the description on the guidance,navigation,and control design as well as the framework of optical and radiometric navigation,the results of the HP-keeping operation including trajectory estimation and delta-V planning during the entire asteroid proximity phase are summarized and evaluated as a first report.Consequently,this paper states that the HP.keeping operation in the framework of HPNAV had succeeded without critical incidents,and the number of trajectory control delta-V was planned fficiently throughout the period.