Due to the flammability and explosive nature of liquefied natural gas(LNG),an extremely strict process is followed for the transporta-tion of LNG carriers in China.Particularly,no LNG carriers are operating in inland ...Due to the flammability and explosive nature of liquefied natural gas(LNG),an extremely strict process is followed for the transporta-tion of LNG carriers in China.Particularly,no LNG carriers are operating in inland rivers within the country.Therefore,to ensure the future navigation safety of LNG carriers entering the Yangtze River,the risk sources of LNG carriers’navigation safety must be identi-fied and evaluated.Based on the Delphi and expert experience method,this paper analyses and discusses the navigation risk factors of LNG carriers in the lower reaches of the Yangtze River from four aspects(human,ship,environment and management),identifies 12 risk indicators affecting the navigation of LNG carriers and establishes a risk evaluation index system.Further,an entropy weight fuzzy model is utilized to reduce the influence of subjective judgement on the index weight as well as to conduct a segmented and overall evaluation of LNG navigation risks in the Baimaosha Channel.Finally,the cloud model is applied to validate the consistent feasibility of the entropy weight fuzzy model.The research results indicate that the method provides effective technical support for further study on the navigation security of LNG carriers in inland rivers.展开更多
Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffi...Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.展开更多
基金sponsor from the National Natural Science Foundation of China(NSFC)(Grant No.51809207).
文摘Due to the flammability and explosive nature of liquefied natural gas(LNG),an extremely strict process is followed for the transporta-tion of LNG carriers in China.Particularly,no LNG carriers are operating in inland rivers within the country.Therefore,to ensure the future navigation safety of LNG carriers entering the Yangtze River,the risk sources of LNG carriers’navigation safety must be identi-fied and evaluated.Based on the Delphi and expert experience method,this paper analyses and discusses the navigation risk factors of LNG carriers in the lower reaches of the Yangtze River from four aspects(human,ship,environment and management),identifies 12 risk indicators affecting the navigation of LNG carriers and establishes a risk evaluation index system.Further,an entropy weight fuzzy model is utilized to reduce the influence of subjective judgement on the index weight as well as to conduct a segmented and overall evaluation of LNG navigation risks in the Baimaosha Channel.Finally,the cloud model is applied to validate the consistent feasibility of the entropy weight fuzzy model.The research results indicate that the method provides effective technical support for further study on the navigation security of LNG carriers in inland rivers.
基金supported by ETRI through Maritime Safety & Maritime Traffic Management R&D Program of the MOF/KIMST (2009403, Development of Next Generation VTS for Maritime Safety)supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0015009)
文摘Despite of modern navigation devices, there are problems in navigation of vessels in waterways due to the geographical structures, disturbances in water, dynamic nature, and heavily environmental influenced sea traffic. Even though all vessels are equipped with modern navigation devices, the accidents are reported caused by various reasons and mainly by human factor according to investigation. We propose an effective and efficient composition collision risk calculation method for finding the collision probability and avoiding the collision between ships in possible collision situations. The proposed composition collision risk calculation method at ship's position using combination of fuzzy and fuzzy comprehensive evaluation methods. The algorithm is straightforward to implement and is shown to be effective in automatic ship handling for ships involved in complex navigation situations. Experiments are carried out with indigenous data and the results show the effectiveness of the proposed approach.