In this paper, ZnO/Nb2O5 core/shell nanorod arrays were synthesized and used as photoanodes for dye- sensitized solar cells (DSSCs). We first synthesized ZnO nanorod array on fluorine-doped tin oxide (FTO) glasses...In this paper, ZnO/Nb2O5 core/shell nanorod arrays were synthesized and used as photoanodes for dye- sensitized solar cells (DSSCs). We first synthesized ZnO nanorod array on fluorine-doped tin oxide (FTO) glasses by a hydrothermal method, and then ZnO/Nb2O5 core/shell nanorod array was directly obtained via solvothermal reaction in NbCl5 solution. The scanning electron micro- scope (SEM) and transmission electron microscope (TEM) images revealed that the ZnO nanorods were uniformly wrapped by Nb2O5 shell layers with a thickness of 30-40 nm. Photovoltaic characterization showed that the device based on ZnO/Nb2O5 core/shell nanorod photoanode exhibited an improved efficiency of 1.995%, which was much higher than the efficiency of 0.856% for the DSSC based on bare ZnO nanorod photoanode. This proved that the photovoltaic performance of ZnO nanorods could be improved by wrapping with Nb2O5 shells.展开更多
文摘In this paper, ZnO/Nb2O5 core/shell nanorod arrays were synthesized and used as photoanodes for dye- sensitized solar cells (DSSCs). We first synthesized ZnO nanorod array on fluorine-doped tin oxide (FTO) glasses by a hydrothermal method, and then ZnO/Nb2O5 core/shell nanorod array was directly obtained via solvothermal reaction in NbCl5 solution. The scanning electron micro- scope (SEM) and transmission electron microscope (TEM) images revealed that the ZnO nanorods were uniformly wrapped by Nb2O5 shell layers with a thickness of 30-40 nm. Photovoltaic characterization showed that the device based on ZnO/Nb2O5 core/shell nanorod photoanode exhibited an improved efficiency of 1.995%, which was much higher than the efficiency of 0.856% for the DSSC based on bare ZnO nanorod photoanode. This proved that the photovoltaic performance of ZnO nanorods could be improved by wrapping with Nb2O5 shells.