期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Geochemical evolution of the Mangalwar Complex,Aravalli Craton,NW India:Insights from elemental and Nd-isotope geochemistry of the basement gneisses
1
作者 Iftikhar Ahmad M.E.A.Mondal +1 位作者 Rajneesh Bhutani M.Satyanarayanan 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第3期931-942,共12页
The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotop... The Banded Gneissic Complex(BGC) of the Aravalli Craton is divided into BGC-I and BGC-Ⅱ; the BGC-Ⅱ(central Rajasthan) is comprised of the Sandmata Complex and the Mangalwar Complex. We report elemental and Nd-isotope geochemistry of basement gneisses of the Mangalwar Complex and constrain its origin and evolution. Geochemically, the basement gneisses have been classified as low-SiO_2 gneisses(LSG) and high-SiO_2 gneisses(HSG). Both the LSG and HSG are potassic, calc-alkaline and peraluminous in nature. The LSG are enriched in incompatible(K, Sr, Ba, large ion lithophile elements) and compatible elements(MgO, Cr, and Ni). They display fractionated rare earth element patterns(avg.La_N/Yb_N=12.1)with small Eu-anomaly(δEu=0.9), and exhibit negative anomalies of Nb and Ti in primitive mantlenormalized multi-element diagram. In terms of Nd-isotope geochemistry, the LSG are characterized by_(εNd)(t)=4.2 and depleted mantle model age of 3.3 Ga. To account for these geochemical characteristics we propose a three-stage petrogenetic model for the LSG:(1) fluids released from dehydration of subducting slab metasomatised the mantle-wedge;(2) the subducting slab underwent slab-breakoff causing upwelling and decompression melting of the asthenosphere during waning stage of subduction; and(3)upwelling asthenosphere provided the requisite heat for partial melting of the metasomatised mantlewedge leading to generation of the LSG parental magma. Asthenospheric upwelling also contributed in the LSG petrogenesis which is evident from its high Mg#(avg. 0.53). The LSG formed in this way are contemporary and chemically akin to sanukitoids of the BGC-I and Archean sanukitoids reported elsewhere. This provides a basis to consider the LSG as a part of the BGC-I. Contrary to the LSG, the HSG are depleted in compatible elements(MgO=avg. 1.1 wt.%; Cr=avg. 8 ppm; Ni=avg. 6 ppm) but enriched in incompatible elements(Sr=avg. 239 ppm, Ba=avg. 469 ppm). Its_(εNd)(t) values vary from-9.5 to-5.4.These chemical features of the HSG are akin to potassic granitoids found elsewhere. In this backdrop, we propose that the HSG suite of the Mangalwar Complex was derived from re-melting(partial) of an older crust(TTG?) occurring within the BGC-Ⅱ. 展开更多
关键词 Aravalli CRATON Mangalwar COMPLEX nd-isotope geochemistry Grey GNEISSES SANUKITOID High-K granitoids
下载PDF
PGE and isotopic characteristics of Shergol and Suru Valley Ophiolites,Western Ladakh:Implications for supra-subduction tectonics along Indus Suture Zone
2
作者 Irfan Maqbool Bhat Talat Ahmad +2 位作者 D.V.Subba Rao Srinivasan Balakrishnan N.V.Chalapathi Rao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期473-488,共16页
Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Sur... Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone(ISZ),western Ladakh.The total PGE concentration of the Shergol and Suru Valley peridotites(∑PGE=96-180 ppb)is much higher than that of the primitive mantle and global ophiolitic mantle peridotites.The studied peridotites show concave upward PGE-distribution patterns with higher palladium-group PGE/Iridium-group PGE ratios(i.e.,0.8-2.9)suggesting that the partial melting is not the sole factor responsible for the evolution of these peridotites.The observed PGE-distribution patterns are distinct from residual/refractory mantle peridotites,which have concave downward or flat PGE-distribution patterns.Relative enrichment of palladium-group PGE as well as other whole-rock incompatible elements(e.g.,LILE and LREE)and higher Pd/Ir ratio(1.1-5.9)reflects that these peridotites have experienced fluid/melt interaction in a supra-subduction zone(SSZ)tectonic setting.Also,the Shergol mafic intrusives and Dras mafic volcanics,associated with the studied peridotites,have high^(143)Nd/^(144)Nd ratios(i.e.,0.512908-0.513078 and 0.512901-0.512977,respectively)and positiveε_(Nd)(t)(calculated for t=140 Ma)values(i.e.,+5.3 to+8.6 and+5.1 to+6.6,respectively),indicating derivation from depleted mantle sources within an intra-oceanic arc setting,similar to Spongtang and Nidar ophiolites from other parts of Ladakh Himalaya.The transition from SSZ-type Shergol and Suru Valley peridotites to Early Cretaceous tholeiitic Shergol mafic intrusives followed by tholeiitic to calc-alkaline Dras mafic volcanics within the Neo-Tethys Ocean exhibit characteristics of subduction initiation mechanism analogous to the Izu-Bonin-Mariana arc system within western Pacific. 展开更多
关键词 PGE nd-isotope Mantle peridotites OPHIOLITES LADAKH Neo-Tethys Ocean
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部