Zn-Cr coating was prepared on the surface of sintered NdFeB permanent magnet samples and preparation parameters were established. The anticorrosive property of Zn-Cr coating on NdFeB was studied by whole-immersion tes...Zn-Cr coating was prepared on the surface of sintered NdFeB permanent magnet samples and preparation parameters were established. The anticorrosive property of Zn-Cr coating on NdFeB was studied by whole-immersion test in NaCl solution and compared with that of zinc plating and nickel plating on NdFeB. Open-circuit potential and self-corrosion current of NdFeB samples with and without Zn-Cr coating were measured. The micro-morphology and composition of Zn-Cr coming were analyzed through SEM, XPS, EDS and XRD. The effect of Zn-Cr coating on magnetic property of NdFeB magnet was also investigated. It is exposed that Zn-Cr coating is anodic type coating for NdFeB magnet, and provided substrate electrochemical protection, barrier protection and passivation protection. The anticorrosion property of NdFeB magnet is obviously enhanced by Zn-Cr coating while the magnet property of NdFeB magnet changed little.展开更多
The Ni-P/TiO2 composite film on sintered NdFeB permanent magnet was investigated by X-ray diffraction (XRD),environmental scanning electron microscopy (ESEM),and energy dispersive X-ray spectrometer (EDX). The c...The Ni-P/TiO2 composite film on sintered NdFeB permanent magnet was investigated by X-ray diffraction (XRD),environmental scanning electron microscopy (ESEM),and energy dispersive X-ray spectrometer (EDX). The corrosion resistance of Ni-P/TiO2 film coated on NdFeB magnet,in 0.5 mol/L NaCl solution,was studied by potentiodynamic polarization,salt spray test and electrochemical impedance spectroscopy (EIS) techniques. The self-corrosion current density (icorr) and the polarization resistance (Rp) of Ni-P/TiO2 film are 0.22 μA/cm2 (about 14% of that of Ni-P coating),and 120 kΩ·cm2 (about 2 times of that of Ni-P coating),respectively. The anti-salt spray time of Ni-P/TiO2 film is about 2.5 times of that of the Ni-P coating. The results indicate that Ni-P/TiO2 film has a better corrosion resistance than Ni-P coating,and the composite film increases the corrosion resistance of NdFeB magnet markedly.展开更多
Recovering critical metals from secondary resources have attracted great interest recently.In this work,a green one-pot leaching-extraction process based on tributyl(tetradecyl)phosphonium chloride (P_(44414)Cl)aqueou...Recovering critical metals from secondary resources have attracted great interest recently.In this work,a green one-pot leaching-extraction process based on tributyl(tetradecyl)phosphonium chloride (P_(44414)Cl)aqueous biphasic system (ABS) was developed to efficiently recover rare earth elements (REEs) from Nd Fe B permanent magnet.The reaction process,phase separation mechanism,and operation conditions were thoroughly investigated.It is found that the P_(44414)Cl-HCl ABS showed strong extraction ability towards Fe (>99%) whereas only a few REEs (<10%) were extracted,leading to extremely high separation selectivity between Fe and REEs.The characterization results showed that the coordination differences of Fe and Nd in HCl were the main driving forces for such highly selective separation.The phase diagram of P_(44414)Cl-Nd Cl_(3)ABS indicated that the salting-out effect of Nd Cl_(3)was stronger than common chlorides.Due to the hydrophobic property of P_(44414)[Fe Cl_(4)]and salting-out effect of Nd Cl_(3),the P_(44414)Cl could directly form ABS at room temperature after dissolving practical roasted Nd Fe B samples without any other operations and reagents.REEs and Fe could be mutually separated in just one step.Compared with traditional liquid-liquid extraction or ABS separation,this recovery process is green and facile and shows great application prospects in the field of rare-earth recovery.展开更多
A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials...A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5-2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magnetic field space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.展开更多
After analyzing the phenomena and processes of hydrogen embrittlement of NdFeB permanent magnets, RF magnetron sputtering was used to fabricate Al thin films and then oxidized to form the Al/Al_2O_3 composite films on...After analyzing the phenomena and processes of hydrogen embrittlement of NdFeB permanent magnets, RF magnetron sputtering was used to fabricate Al thin films and then oxidized to form the Al/Al_2O_3 composite films on the magnets as the hydrogen resistance coatings. SEM and EDS were used to examine the morphology and composition respectively. Hydrogen resistance performance was tested by exposing the magnets in 10 MPa hydrogen gas at room temperature. The results show that the magnets with 8 μm Al/Al_2O_3 coatings can withstand hydrogen of 10 MPa for 65 min without being embrittled into powder. The samples with and without hydrogen resistance coatings have almost the same magnetic properties.展开更多
Availability of magnetic materials is most crucial for modern Europe,as they are integral to energy conversion across the renewable energy and electric mobility sectors.Unfortunately,there is still no circular economy...Availability of magnetic materials is most crucial for modern Europe,as they are integral to energy conversion across the renewable energy and electric mobility sectors.Unfortunately,there is still no circular economy to reuse and capture value for these types of materials.With the prediction that the need for NdFeB Rare Earth(RE)magnets will double in the next 10 years,this problem becomes even more urgent.As the quality of the recollected materials varies significantly,the development of a classification system for recyclate grades of EOL NdFeB magnets in combination with an eco-labelling system for newly produced RE permanent magnets is proposed to clearly identify different magnet types and qualities.It categorises the NdFeB magnets by technical pre-processing requirements,facilitating use of the highly effective HPMS process(Hydrogen Processing of Magnetic Scrap)for re-processing extracted materials directly from NdFeB alloy.The proposed measures will have a great impact to overcome existing low recycling rates due to poor collection,high leakages of collected materials into non-suitable channels,and inappropriate interface management between logistics,mechanical pre-processing and metallurgical metals recovery.展开更多
Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated i...Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.展开更多
文摘Zn-Cr coating was prepared on the surface of sintered NdFeB permanent magnet samples and preparation parameters were established. The anticorrosive property of Zn-Cr coating on NdFeB was studied by whole-immersion test in NaCl solution and compared with that of zinc plating and nickel plating on NdFeB. Open-circuit potential and self-corrosion current of NdFeB samples with and without Zn-Cr coating were measured. The micro-morphology and composition of Zn-Cr coming were analyzed through SEM, XPS, EDS and XRD. The effect of Zn-Cr coating on magnetic property of NdFeB magnet was also investigated. It is exposed that Zn-Cr coating is anodic type coating for NdFeB magnet, and provided substrate electrochemical protection, barrier protection and passivation protection. The anticorrosion property of NdFeB magnet is obviously enhanced by Zn-Cr coating while the magnet property of NdFeB magnet changed little.
基金Sponsored by Hi-Tech Research and Development Program of China (2003AA305120)
文摘The Ni-P/TiO2 composite film on sintered NdFeB permanent magnet was investigated by X-ray diffraction (XRD),environmental scanning electron microscopy (ESEM),and energy dispersive X-ray spectrometer (EDX). The corrosion resistance of Ni-P/TiO2 film coated on NdFeB magnet,in 0.5 mol/L NaCl solution,was studied by potentiodynamic polarization,salt spray test and electrochemical impedance spectroscopy (EIS) techniques. The self-corrosion current density (icorr) and the polarization resistance (Rp) of Ni-P/TiO2 film are 0.22 μA/cm2 (about 14% of that of Ni-P coating),and 120 kΩ·cm2 (about 2 times of that of Ni-P coating),respectively. The anti-salt spray time of Ni-P/TiO2 film is about 2.5 times of that of the Ni-P coating. The results indicate that Ni-P/TiO2 film has a better corrosion resistance than Ni-P coating,and the composite film increases the corrosion resistance of NdFeB magnet markedly.
基金supported by the National Natural Science Foundation of China (No.U2067213)Natural Science Foundation of Zhejiang Province (No.LR21B060001)the Fundamental Research Funds for the Central Universities (No.2021QNA4029)。
文摘Recovering critical metals from secondary resources have attracted great interest recently.In this work,a green one-pot leaching-extraction process based on tributyl(tetradecyl)phosphonium chloride (P_(44414)Cl)aqueous biphasic system (ABS) was developed to efficiently recover rare earth elements (REEs) from Nd Fe B permanent magnet.The reaction process,phase separation mechanism,and operation conditions were thoroughly investigated.It is found that the P_(44414)Cl-HCl ABS showed strong extraction ability towards Fe (>99%) whereas only a few REEs (<10%) were extracted,leading to extremely high separation selectivity between Fe and REEs.The characterization results showed that the coordination differences of Fe and Nd in HCl were the main driving forces for such highly selective separation.The phase diagram of P_(44414)Cl-Nd Cl_(3)ABS indicated that the salting-out effect of Nd Cl_(3)was stronger than common chlorides.Due to the hydrophobic property of P_(44414)[Fe Cl_(4)]and salting-out effect of Nd Cl_(3),the P_(44414)Cl could directly form ABS at room temperature after dissolving practical roasted Nd Fe B samples without any other operations and reagents.REEs and Fe could be mutually separated in just one step.Compared with traditional liquid-liquid extraction or ABS separation,this recovery process is green and facile and shows great application prospects in the field of rare-earth recovery.
基金This project was supported financially by the "863"project Ministry of Science and Technology(2002AA324010).
文摘A reciprocating magnetic refrigerator was developed based on the active magnetic regeneration technology. Rare earth metal Gd and intermetallic compound LaFe11.2Co0.7Si1.1 were used as the magnetic operating materials in the machine. The particles of the magnetic operating materials, with diameter of 0.5-2 mm and total mass of 950 g, were mounted in the cooling bed. A magnetic field was assembled using NdFeB rare earth permanent magnets. It had the magnetic field space of Φ 34×200 and the magnetic induction of 1.5 T. The water at pH=10 is used as a heat transfer fluid. When the ambient temperature is 296 K, a temperature span of 18 K was achieved after operation of 45 min at a frequency of 0.178 Hz. The temperature span and the output power increase significantly with the increasing velocity of heat transfer.
文摘After analyzing the phenomena and processes of hydrogen embrittlement of NdFeB permanent magnets, RF magnetron sputtering was used to fabricate Al thin films and then oxidized to form the Al/Al_2O_3 composite films on the magnets as the hydrogen resistance coatings. SEM and EDS were used to examine the morphology and composition respectively. Hydrogen resistance performance was tested by exposing the magnets in 10 MPa hydrogen gas at room temperature. The results show that the magnets with 8 μm Al/Al_2O_3 coatings can withstand hydrogen of 10 MPa for 65 min without being embrittled into powder. The samples with and without hydrogen resistance coatings have almost the same magnetic properties.
文摘Availability of magnetic materials is most crucial for modern Europe,as they are integral to energy conversion across the renewable energy and electric mobility sectors.Unfortunately,there is still no circular economy to reuse and capture value for these types of materials.With the prediction that the need for NdFeB Rare Earth(RE)magnets will double in the next 10 years,this problem becomes even more urgent.As the quality of the recollected materials varies significantly,the development of a classification system for recyclate grades of EOL NdFeB magnets in combination with an eco-labelling system for newly produced RE permanent magnets is proposed to clearly identify different magnet types and qualities.It categorises the NdFeB magnets by technical pre-processing requirements,facilitating use of the highly effective HPMS process(Hydrogen Processing of Magnetic Scrap)for re-processing extracted materials directly from NdFeB alloy.The proposed measures will have a great impact to overcome existing low recycling rates due to poor collection,high leakages of collected materials into non-suitable channels,and inappropriate interface management between logistics,mechanical pre-processing and metallurgical metals recovery.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(BK20171408)the Graduate Student Innovation Foundation of Jiangsu Province(201711276005Z)Scientific Foundation of Nanjing Institute of Technology(CKJB201402,and YKJ201506)
文摘Anisotropic NdFeB/SmCoCuFeZr composite bonded magnets were prepared by warm compaction process. The effects of adding SmCoCuFeZr magnetic powder on the properties of anisotropic bonded NdFeB magnet were investigated in this work. The results show that, both magnetic properties and temperature stability of the bonded magnet can be improved by adding fine SmCoCuFeZr magnetic powder. In the present study, the optimal content of SmCoCuFeZr magnetic powder was about 20 wt.%, in this case, the Br, Hcj, and(BH)maxof the NdFeB/SmCoCuFeZr composite magnet achieved 0.943 T, 1250 kA/m, and168 kJ/m^3, respectively.