期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
共找到2,491篇文章
< 1 2 125 >
每页显示 20 50 100
NIR-II fluorescence imaging in liver tumor surgery: A narrative review 被引量:1
1
作者 Zihao Liu Lifeng Yan +1 位作者 Qingsong Hu Dalong Yin 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期29-44,共16页
In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpat... In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction. 展开更多
关键词 fluorescence guided-surgery liver cancer near infrared-II optical imaging
下载PDF
Self-confocal NIR-II fluorescence microscopy for multifunctional in vivo imaging
2
作者 Jing Zhou Tianxiang Wu +5 位作者 Runze Chen Liang Zhu Hequn Zhang Yifei Li Liying Chen Jun Qian 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期105-119,共15页
Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imagi... Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution.However,the traditional NIR-IIfluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal e±ciency,as well as di±cultly to adjust.Two types of upgraded NIR-IIfluorescence confocal microscopes,sharing the same pinhole by excitation and emission focus,leading to higher confocal e±ciency,are built in this work.One type is-ber-pinhole-based confocal microscope applicable to CW laser excitation.It is constructed forfluorescence intensity imaging with large depth,high stabilization and low cost,which could replace multiphotonfluorescence microscopy in some applications(e.g.,cerebrovascular and hepatocellular imaging).The other type is air-pinhole-based confocal microscope applicable to femtosecond(fs)laser excitation.It can be employed not only for NIR-IIfluorescence intensity imaging,but also for multi-channelfluorescence lifetime imaging to recognize different structures with similarfluorescence spectrum.Moreover,it can be facilely combined with multiphotonfluorescence microscopy.A single fs pulsed laser is utilized to achieve up-conversion(visible multiphotonfluorescence)and down-conversion(NIR-II one-photonfluorescence)excitation simultaneously,extending imaging spectral channels,and thus facilitates multi-structure and multi-functional observation. 展开更多
关键词 Self-confocal fiber-pinhole air-pinhole multi-channe fluorescence lifetime imaging multi-color imaging
下载PDF
Pay attention to the application of indocyanine green fluorescence imaging technology in laparoscopic liver cancer resection
3
作者 Li-Min Kang Fu-Wei Zhang +1 位作者 Fa-Kun Yu Lei Xu 《World Journal of Clinical Cases》 SCIE 2024年第23期5288-5293,共6页
Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.... Traditional laparoscopic liver cancer resection faces challenges,such as difficultiesin tumor localization and accurate marking of liver segments,as well as theinability to provide real-time intraoperative navigation.This approach falls shortof meeting the demands for precise and anatomical liver resection.The introductionof fluorescence imaging technology,particularly indocyanine green,hasdemonstrated significant advantages in visualizing bile ducts,tumor localization,segment staining,microscopic lesion display,margin examination,and lymphnode visualization.This technology addresses the inherent limitations oftraditional laparoscopy,which lacks direct tactile feedback,and is increasinglybecoming the standard in laparoscopic procedures.Guided by fluorescenceimaging technology,laparoscopic liver cancer resection is poised to become thepredominant technique for liver tumor removal,enhancing the accuracy,safetyand efficiency of the procedure. 展开更多
关键词 Indocyanine green fluorescence imaging technology LAPAROSCOPY HEPATECTOMY Liver tumor
下载PDF
Application value of indocyanine green fluorescence imaging in guiding sentinel lymph node biopsy diagnosis of gastric cancer: Meta-analysis
4
作者 Qi-Jia Zhang Zhi-Cheng Cao +4 位作者 Qin Zhu Yu Sun Rong-Da Li Jin-Long Tong Qin Zheng 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第6期1883-1893,共11页
BACKGROUND Gastric cancer is a common malignant tumor of the digestive system worldwide,and its early diagnosis is crucial to improve the survival rate of patients.Indocyanine green fluorescence imaging(ICG-FI),as a n... BACKGROUND Gastric cancer is a common malignant tumor of the digestive system worldwide,and its early diagnosis is crucial to improve the survival rate of patients.Indocyanine green fluorescence imaging(ICG-FI),as a new imaging technology,has shown potential application prospects in oncology surgery.The meta-analysis to study the application value of ICG-FI in the diagnosis of gastric cancer sentinel lymph node biopsy is helpful to comprehensively evaluate the clinical effect of this technology and provide more reliable guidance for clinical practice.AIM To assess the diagnostic efficacy of optical imaging in conjunction with indocya-nine green(ICG)-guided sentinel lymph node(SLN)biopsy for gastric cancer.METHODS Electronic databases such as PubMed,Embase,Medline,Web of Science,and the Cochrane Library were searched for prospective diagnostic tests of optical imaging combined with ICG-guided SLN biopsy.Stata 12.0 software was used for analysis by combining the"bivariable mixed effect model"with the"midas"command.The true positive value,false positive value,false negative value,true negative value,and other information from the included literature were extracted.A literature quality assessment map was drawn to describe the overall quality of the included literature.A forest plot was used for heterogeneity analysis,and P<0.01 was considered to indicate statistical significance.A funnel plot was used to assess publication bias,and P<0.1 was considered to indicate statistical significance.The summary receiver operating characteristic(SROC)curve was used to calculate the area under the curve(AUC)to determine the diagnostic accuracy.If there was interstudy heterogeneity(I2>50%),meta-regression analysis and subgroup analysis were performed.analysis were performed.RESULTS Optical imaging involves two methods:Near-infrared(NIR)imaging and fluorescence imaging.A combination of optical imaging and ICG-guided SLN biopsy was useful for diagnosis.The positive likelihood ratio was 30.39(95%CI:0.92-1.00),the sensitivity was 0.95(95%CI:0.82-0.99),and the specificity was 1.00(95%CI:0.92-1.00).The negative likelihood ratio was 0.05(95%CI:0.01-0.20),the diagnostic odds ratio was 225.54(95%CI:88.81-572.77),and the SROC AUC was 1.00(95%CI:The crucial values were sensitivity=0.95(95%CI:0.82-0.99)and specificity=1.00(95%CI:0.92-1.00).The Deeks method revealed that the"diagnostic odds ratio"funnel plot of SLN biopsy for gastric cancer was significantly asymmetrical(P=0.01),suggesting significant publication bias.Further meta-subgroup analysis revealed that,compared with fluorescence imaging,NIR imaging had greater sensitivity(0.98 vs 0.73).Compared with optical imaging immediately after ICG injection,optical imaging after 20 minutes obtained greater sensitivity(0.98 vs 0.70).Compared with that of patients with an average SLN detection number<4,the sensitivity of patients with a SLN detection number≥4 was greater(0.96 vs 0.68).Compared with hematoxylin-eosin(HE)staining,immunohistochemical(+HE)staining showed greater sensitivity(0.99 vs 0.84).Compared with subserous injection of ICG,submucosal injection achieved greater sensitivity(0.98 vs 0.40).Compared with 5 g/L ICG,0.5 and 0.05 g/L ICG had greater sensitivity(0.98 vs 0.83),and cT1 stage had greater sensitivity(0.96 vs 0.72)than cT2 to cT3 clinical stage.Compared with that of patients≤26,the sensitivity of patients>26 was greater(0.96 vs 0.65).Compared with the literature published before 2010,the sensitivity of the literature published after 2010 was greater(0.97 vs 0.81),and the differences were statistically significant(all P<0.05).CONCLUSION For the diagnosis of stomach cancer,optical imaging in conjunction with ICG-guided SLN biopsy is a therapeut-ically viable approach,especially for early gastric cancer.The concentration of ICG used in the SLN biopsy of gastric cancer may be too high.Moreover,NIR imaging is better than fluorescence imaging and may obtain higher sensitivity. 展开更多
关键词 Gastric neoplasms Sentinel lymph nodes Near infrared imaging fluorescence imaging Indocyanine green META-ANALYSIS
下载PDF
Near-Infrared Fluorescence Imaging Contrast Agents for Clinical Research: Limitations and Alternatives
5
作者 Serigne Moussa Badiane Elhadji A. L. Bathily +1 位作者 Fawrou Seye Louis A.D. Diouf 《Open Journal of Biophysics》 2024年第1期73-77,共5页
Introduction: Near-infrared fluorescence imaging is a technique that will establish itself in the short term at the international level because it is recognized for its potential to improve the performance of surgical... Introduction: Near-infrared fluorescence imaging is a technique that will establish itself in the short term at the international level because it is recognized for its potential to improve the performance of surgical interventions, its moderate investment and operating costs and its portability. Although the technology is now mature, there is currently the problem of the availability of contrast agents to be injected IV. The aim of this methodology article is to propose an alternative solution to the need for contrast agents for clinical research, particularly in oncology. Methodology: They consist of coupling a fluorescent marker in the form of an NHS derivative, such as IR DYE manufactured in compliance with GMP, with therapeutic monoclonal antibodies having marketing authorization for molecular imaging. For a given antibody, the marking procedure must be the subject of a validation file on the final preparation filtered on a sterilizing membrane at 0.22 μm. Once the procedure has been validated, it would be unnecessary to repeat the tests before each clinical research examination. A check of the marking by thin-layer chromatography (TLC) and place it in a sample bank at +4˚C for 1 month of each injected formulation would be sufficient for additional tests if necessary. Conclusion: Molecular near-infrared fluorescence imaging is experiencing development, the process of which could be accelerated by greater availability of clinical contrast agents. Alternative solutions are therefore necessary to promote clinical research in this area. These methods must be shared to make it easier for researchers. 展开更多
关键词 fluorescence imaging Contrast Agents Clinical Research
下载PDF
Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis
6
作者 Pan Luo Fu-Qiang Gao +5 位作者 Wei Sun Jun-You Li Cheng Wang Qing-Yu Zhang Zhi-Zhuo Li Peng Xu 《Military Medical Research》 SCIE CAS CSCD 2024年第2期287-307,共21页
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec... Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies. 展开更多
关键词 Rheumatoid arthritis fluorescent probe imaging DIAGNOSIS BIOMARKER
下载PDF
Automated apoptosis identification in fluorescence imaging of nucleus based on histogram of oriented gradients of high-frequency wavelet coefficients
7
作者 Shutong Liu Limei Su +3 位作者 Han Sun Tongsheng Chen Min Hu Zhengfei Zhuang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS CSCD 2023年第2期28-38,共11页
The automatic and accurate identification of apoptosis facilitates large-scale cell analysis.Most identification approaches using nucleus fluorescence imaging are based on specific morphological parameters.However,the... The automatic and accurate identification of apoptosis facilitates large-scale cell analysis.Most identification approaches using nucleus fluorescence imaging are based on specific morphological parameters.However,these parameters cannot completely describe nuclear morphology,thus limiting the identification accuracy of models.This paper proposes a new feature extraction method to improve the performance of the model for apoptosis identification.The proposed method uses a histogram of oriented gradient(HOG)of high-frequency wavelet coefficients to extract internal and edge texture information.The HOG vectors are classified using support vector machine.The experimental results demonstrate that the proposed feature extraction method well performs apoptosis identification,attaining 95:7% accuracy with low cost in terms of time.We confirmed that our method has potential applications to cell biology research. 展开更多
关键词 APOPTOSIS NUCLEUS fluorescence imaging HOG wavelet decomposition
下载PDF
Adaptive Design of Fluorescence Imaging Systems for Custom Resolution, Fields of View, and Geometries
8
作者 Roujia Wang Riley J.Deutsch +2 位作者 Enakshi D.Sunassee Brian T.Crouch Nirmala Ramanujam 《Biomedical Engineering Frontiers》 CAS 2023年第1期260-273,共14页
Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples... Objective and Impact Statement:We developed a generalized computational approach to design uniform,high-intensity excitation light for low-cost,quantitative fluorescence imaging of in vitro,ex vivo,and in vivo samples with a single device.Introduction:Fluorescence imaging is a ubiquitous tool for biomedical applications.Researchers extensively modify existing systems for tissue imaging,increasing the time and effort needed for translational research and thick tissue imaging.These modifications are applicationspecific,requiring new designs to scale across sample types.Methods:We implemented a computational model to simulate light propagation from multiple sources.Using a global optimization algorithm and a custom cost function,we determined the spatial positioning of optical fibers to generate 2 illumination profiles.These results were implemented to image core needle biopsies,preclinical mammary tumors,or tumor-derived organoids.Samples were stained with molecular probes and imaged with uniform and nonuniform illumination.Results:Simulation results were faithfully translated to benchtop systems.We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings.The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model.Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used.Conclusion:We demonstrate the significance of using a computationally designed illumination for in vitro,ex vivo,and in vivo fluorescence imaging.Applicationspecific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features.This approach is generalizable across light sources,biological applications,and detectors. 展开更多
关键词 ILLUMINATION fluorescence image
下载PDF
Compact and robust dual-color linearly polarized illumination source for three-photon fluorescence imaging
9
作者 Jiazheng Song Yanyan Zhang Yuanshan Liu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第5期69-76,共8页
The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized li... The miniaturized femtosecond laser in near infrared-Ⅱregion is the core equipment of threephoton microscopy.In this paper,we design a compact and robust illumination source that emits dual-color linearly polarized light for three-photon microscopy.Based on an all-polarizationmaintaining passive mode-locked fiber laser,we shift the center wavelength of the pulses to the 1.7m band utilizing cascade Raman effect,thereby generate dual-wavelength pulses.To enhance clarity,the two wavelengths are separated through the graded-index multimode fiber.Then we obtain the dual-pulse sequences with 1639.4 nm and 1683.7 nm wavelengths,920 fs pulse duration,and 23.75 MHz pulse repetition rate.The average power of the signal is 53.64mW,corresponding to a single pulse energy of 2.25 nJ.This illumination source can be further amplified and compressed for three-photon fluorescence imaging,especially dual-color three-photon fluorescence imaging,making it an ideal option for biomedical applications. 展开更多
关键词 Three-photon fluorescence imaging illumination source dual-wavelength femtosecond pulse cascaded Raman effect graded-index multimodefiber.
下载PDF
Fluorescence molecular imaging system and fusion algorithm based on 2CCD camera
10
作者 王玉 王明泉 +1 位作者 杨晓峰 王艳翔 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期161-164,共4页
Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing sect... Infrared and visible light images can be obtained simultaneously by building fluorescence imaging system,which includes fluorescence excitation,images acquisition,mechanical part,image transmission and processing section.This system studied the 2charge-coupled device(CCD)camera(AD-080CL)of the JAI company.Fusion algorithm of visible light and near infrared images was designed for the fluorescence imaging system with wavelet transform image fusion algorithm.In order to enhance the fluorescent moiety of the fusion image,the luminance value of the green component of the color image was changed.And using microsoft foundation classes(MFC)application architecture,the supporting software system was bulit in VS2010 environment. 展开更多
关键词 fluorescence imaging system image fusion wavelet transform microsoft foundation classes(MFC)
下载PDF
Response of Ficus microcarpa L.Foliage to Water Stress Determined by Chlorophyll Fluorescence Imaging Technique
11
作者 林淑玲 陈华 +3 位作者 董蕾 曹洪麟 陈贻竹 顾群 《Agricultural Science & Technology》 CAS 2012年第4期739-745,共7页
[Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of d... [Objective] This study was to determine the response of Ficus microcarpa L. foliage to polyethylene glycol (PEG) simulated water stress using chlorophyll fluo- rescence imaging technique. [Method] The responses of detached leaves from Ficus microcarpa, Ficus benjamina and Nerium oleander to PEG-6000 simulated water stress were detected, and the chlorophyll fluorescence imaging technique was used to detect and analyze the stress at different spots of a single leaf simultaneously. [Result] The responses of Ficus microcarpa, Ficus benjamina and Nerium oleander to dehydration showed that: ~1~) the maximal photochemical efficiency (Fv/Fm) and non- photo-chemical quenching (NPQ) values were small in the reaction center among different detected spots of leaves, and there were great differences between relative electron transport rate (ETR), photochemical quenching (qP) and quantum efficiency of PSII photochemistry ((φPSII); (2) the differences of these parameters were more ob- vious among different spots of water-stressed leaves; (3) the discrete degrees of the species with strong resitances decreased significantly. [Conclusion] This study lays the foundation for the further research on the response of plants to drought stress using chlorophyll fluorescence imaging technique. 展开更多
关键词 Ficus microcarpa Water stress Chlorophyll a fluorescence imaging
下载PDF
Optical molecular imaging in cancer research:current impact and future prospect
12
作者 Yinuo Li Zihan Li +4 位作者 Yuting Li Xiaofan Gao Tian Wang Xiangyi Ma Mingfu Wu 《Oncology and Translational Medicine》 CAS 2024年第5期212-222,共11页
Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In p... Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In particular,optical molecular imaging is an invaluable cancer detection tool in preoperative planning,intraoperative guidance,and postoperative monitoring owing to its noninvasive nature,rapid turnover,safety,and ease of use.The tumor microenvironment and cells within it express distinct biomarkers.Optical imaging technology leverages these markers to differentiate tumor tissues from surrounding tissues and capture real-time images with high resolution.Nevertheless,a robust understanding of these cancer-relatedmolecules and their dynamic changes is crucial for effectivelymanaging cancer.Recent advancements in opticalmolecular imaging technologies offer novel approaches for cancer investigation in research and practice.This review investigates themodern opticalmolecular imaging techniques employed in both preclinical and clinical research,including bioluminescence,fluorescence,chemiluminescence,photoacoustic imaging,and Raman spectroscopy.We explore the current paradigm of optical molecular imaging modalities,their current status in preclinical cancer research and clinical applications,and future perspectives in the fields of cancer research and treatment. 展开更多
关键词 CANCER Opticalmolecular imaging Bioluminescence imaging fluorescence CHEMILUMINESCENCE Photoacoustic imaging Raman spectroscopy
下载PDF
indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery:State of the art and future directions 被引量:26
13
作者 Gian Luca Baiocchi Michele Diana Luigi Boni 《World Journal of Gastroenterology》 SCIE CAS 2018年第27期2921-2930,共10页
In recent years, the use of fluorescence-guided surgery(FGS) to treat benign and malignant visceral, hepatobiliary and pancreatic neoplasms has significantly increased. FGS relies on the fluorescence signal emitted by... In recent years, the use of fluorescence-guided surgery(FGS) to treat benign and malignant visceral, hepatobiliary and pancreatic neoplasms has significantly increased. FGS relies on the fluorescence signal emitted by injected substances(fluorophores) after being illuminated by ad hoc laser sources to help guide the surgical procedure and provide the surgeon with real-time visualization of the fluorescent structures of interest that would be otherwise invisible. This review surveys and discusses the most common and emerging clinical applications of indocyanine green(ICG)-based fluorescence in visceral, hepatobiliary and pancreatic surgery. The analysis, findings, and discussion presented here rely on the authors' significant experience with this technique in their medical institutions, an up-to-date review of the most relevant articles published on this topic between 2014 and 2018, and lengthy discussions with key opinion leaders in the field during recent conferences and congresses. For each application, the benefits and limitations of this technique, as well as applicable future directions, are described. The imaging of fluorescence emitted by ICG is a simple, fast,relatively inexpensive, and harmless tool with numerous different applications in surgery for both neoplasms and benign pathologies of the visceral and hepatobiliary systems. The ever-increasing availability of visual systems that can utilize this tool will transform some of these applications into the standard of care in the near future. Further studies are needed to evaluate the strengths and weaknesses of each application of ICG-based fluorescence imaging in abdominal surgery. 展开更多
关键词 indocyanine green fluorescence imaging gastrointestinal SURGERY liver SURGERY BILIARY SURGERY pancreatic SURGERY VISCERAL perfusion BILIARY anatomy peritoneal CARCINOMATOSIS
下载PDF
Evaluation of COC183B2 antibody targeting ovarian cancer by near-infrared fluorescence imaging 被引量:4
14
作者 Chen Zhang Xinyu Ling +10 位作者 Yanxiu Guo Cunzhong Yuan Hongyan Cheng Xue Ye Ruiqiong Ma Yinli Zhang Yi Li Xiaohong Chang Beihua Kong Tao Liu Heng Cui 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2019年第4期673-685,共13页
Objective: To evaluate the imaging potential of a novel near-infrared(NIR) probe conjugated to COC183 B2 monoclonal antibodies(MAb) in ovarian cancer(OC).Methods: The expression of OC183 B2 antigen in OC was determine... Objective: To evaluate the imaging potential of a novel near-infrared(NIR) probe conjugated to COC183 B2 monoclonal antibodies(MAb) in ovarian cancer(OC).Methods: The expression of OC183 B2 antigen in OC was determined by immunohistochemical(IHC) staining using tissue microarrays with the H-score system and immunofluorescence(IF) staining of tumor cell lines.Imaging probes with the NIR fluorescent dye cyanine 7(Cy7) conjugated to COC183 B2 Mab were chemically engineered. OC183 B2-positive human OC cells(SKOV3-Luc) were injected subcutaneously into BALB/c nude mice. Bioluminescent imaging(BLI) was performed to detect tumor location and growth. COC183 B2-Cy7 at 1.1,3.3, 10, or 30 μg were used for in vivo fluorescence imaging, and phosphate-buffered saline(PBS), free Cy7 dye and mouse isotype immunoglobulin G(IgG)-Cy7(delivered at the same doses as COC183 B2-Cy7) were used as controls.Results: The expression of OC183 B2 with a high H-score was more prevalent in OC tissue than fallopian tube(FT) tissue. Among 417 OC patients, the expression of OC183 B2 was significantly correlated with the histological subtype, histological grade, residual tumor size, relapse state and survival status. IF staining demonstrated that COC183 B2 specifically expressed in SKOV3 cells but not HeLa cells. In vivo NIR fluorescence imaging indicated that COC183 B2-Cy7 was mainly distributed in the xenograft and liver with optimal tumor-to-background(T/B)ratios in the xenograft at 30 μg dose. The highest fluorescent signals in the tumor were observed at 96 h postinjection(hpi). Ex vivo fluorescence imaging revealed the fluorescent signals mainly from the tumor and liver. IHC analysis confirmed that xenografts were OC183 B2 positive.Conclusions: COC183 B2 is a good candidate for NIR fluorescence imaging and imaging-guided surgery in OC. 展开更多
关键词 COC183B2 ANTIBODY NEAR-INFRARED fluorescence imaging OVARIAN CANCER
下载PDF
Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings (Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium 被引量:3
15
作者 ZHAO-Li-juan XIE Jing-fang +3 位作者 ZHANG Hong WANG Zhen-tao JIANG Hong-jin GAO Shao-long 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期826-836,共11页
The aim of this research was to study the influence of chlorsulfuron residue and cadmium on the enzymatic activity and photosynthetic apparatus of maize(Zea mays L.) plants. Chlorsulfuron and cadmium at 0.001 and 5.0 ... The aim of this research was to study the influence of chlorsulfuron residue and cadmium on the enzymatic activity and photosynthetic apparatus of maize(Zea mays L.) plants. Chlorsulfuron and cadmium at 0.001 and 5.0 mg kg–1, respectively, were mixed and applied to soil prior to planting. The levels of chlorsulfuron-and cadmium-induced stress to plants were estimated by growth, chlorophyll content, lipid peroxide content, enzyme activities, and major fluorescence parameters of chlorophyll(revealed by the fluorescence imaging system Fluor Cam). Chlorsulfuron negatively affected the chlorophyll content, photochemical efficiency of photosystem II in the dark-adapted state, the maximum efficiency of photosystem II, photochemical quenching coefficient, and steady-state fluorescence decline ratio in the leaves of maize seedlings. However, cadmium did not produce noticeable changes. Plants that were exposed to both chlorsulfuron and cadmium showed an obvious increase in the steady-state fluorescence decline ratio. These results implied that the seedlings possessed more resistance to cadmium than to chlorsulfuron and their resistance to chlorsulfuron toxicity was enhanced by the presence of cadmium. The results also suggested that chlorophyll fluorescence imaging reveals overall alterations within the leaves but may not reflect small-scale effects on tissues, as numeric values of specific parameters are averages of the data collected from the whole leaf. 展开更多
关键词 major parameters of Chl fluorescence imaging GERMINATION GROWTH METALS sulfonylurea herbicides
下载PDF
Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes 被引量:3
16
作者 Svitlana MLevchenko Artem Pliss Junle Qu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第1期13-21,共9页
Fluorescence litime imaging(FLIM)is an effective noninvasive bioanalytical tol based onmeasuring fuorescent lifetime of fuorophores.A growing number of FLIM studies utilizes ge-netically engineered fluorescent protein... Fluorescence litime imaging(FLIM)is an effective noninvasive bioanalytical tol based onmeasuring fuorescent lifetime of fuorophores.A growing number of FLIM studies utilizes ge-netically engineered fluorescent proteins targeted to specific subcellular structures to probe localmolecular environment,which opens new directions in cell science.This paper highlights theunconventional applications of FLIM for studies of molecular processes in diverse organelles oflive cultured cells. 展开更多
关键词 fluorescence lifetime imaging fluorescent proteins BIOimaging intracellular procescs
下载PDF
Time-gated fluorescence imaging:Advances in technology and biological applications 被引量:3
17
作者 Wenzhao Yang Sung-Liang Chen 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2020年第3期12-31,共20页
Time-gated(TG)fluorescence imaging(TGFI)has attracted increasing attention within the biological imaging community,especially during the past decade.With rapid development of light sources,image devices,and a variety ... Time-gated(TG)fluorescence imaging(TGFI)has attracted increasing attention within the biological imaging community,especially during the past decade.With rapid development of light sources,image devices,and a variety of approaches for TG implementation,TGFI has demonstrated numerous biological applications ranging from molecules to tissues.The paper presents inclusive TG implementation mainly based on optical choppers and electronic units for synchronization of fluorescence excitation and emission,which also serves as guidelines for researchers to build suited TGFI systems for selected applications.Note that a special focus will be put on TG implementation based on optical choppers for TGFI of long-lived probes(lifetime range from microseconds to milliseconds).Biological applications by TG imaging of recently developed luminescent probes are described. 展开更多
关键词 Time-gated fluorescence imaging system biological application
下载PDF
Intraoperative use of indocyanine green fluorescence imaging in rectal cancer surgery: The state of the art 被引量:5
18
作者 Roberto Peltrini Mauro Podda +9 位作者 Simone Castiglioni Maria Michela Di Nuzzo Michele D'Ambra Ruggero Lionetti Maurizio Sodo Gaetano Luglio Felice Mucilli Salomone Di Saverio Umberto Bracale Francesco Corcione 《World Journal of Gastroenterology》 SCIE CAS 2021年第38期6374-6386,共13页
Indocyanine green(ICG)fluorescence imaging is widely used in abdominal surgery.The implementation of minimally invasive rectal surgery using new methods like robotics or a transanal approach required improvement of op... Indocyanine green(ICG)fluorescence imaging is widely used in abdominal surgery.The implementation of minimally invasive rectal surgery using new methods like robotics or a transanal approach required improvement of optical systems.In that setting,ICG fluorescence optimizes intraoperative vision of anatomical structures by improving blood and lymphatic flow.The purpose of this review was to summarize all potential applications of this upcoming technology in rectal cancer surgery.Each type of use has been separately addressed and the evidence was investigated.During rectal resection,ICG fluorescence angiography is mainly used to evaluate the perfusion of the colonic stump in order to reduce the risk of anastomotic leaks.In addition,ICG fluorescence imaging allows easy visualization of organs such as the ureter or urethra to protect them from injury.This intraoperative technology is a valuable tool for conducting lymph node dissection along the iliac lymphatic chain or to better identifying the rectal dissection planes when a transanal approach is performed.This is an overview of the applications of ICG fluorescence imaging in current surgical practice and a synthesis of the results obtained from the literature.Although further studies are need to investigate the real clinical benefits,these findings may enhance use of ICG fluorescence in current clinical practice and stimulate future research on new applications. 展开更多
关键词 Indocyanine green fluorescence imaging Near infrared Rectal cancer Total mesorectal excision Anastomotic leakage
下载PDF
Advances in surgical techniques for gastric cancer:Indocyanine green and near-infrared fluorescence imaging.Is it ready for prime time? 被引量:3
19
作者 Erica Sakamoto Adriana Vaz Safatle-Ribeiro Ulysses Ribeiro Jr 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2022年第6期587-591,共5页
Surgery is still the primary curative treatment for gastric cancer,which includes resection of the tumor with adequate margins and extended lymphadenectomy.In order to improve the operative results and the quality of ... Surgery is still the primary curative treatment for gastric cancer,which includes resection of the tumor with adequate margins and extended lymphadenectomy.In order to improve the operative results and the quality of life of patients,several endeavors have been made toward precision medicine through image-guided surgery,allowing access to real-time intraoperative anatomy and accurate tumor staging.The goal of the surgeon is to achieve a more precise,individualized,and less invasive surgery without compromising oncological efficiency and safety.In this perspective,we have demonstrated the role of indocyanine green(ICG)and near-infrared(NIR)fluorescence imaging method in gastric cancer surgery.This technique may be used to improve localization of the tumor,detection of sentinel lymph nodes(SLN),real-time lymphatic mapping,and blood flow assessment(anastomosis perfusion). 展开更多
关键词 Indocyanine green near-infrared fluorescence imaging gastric cancer lymphatic mapping
下载PDF
Applications,of fluorescence lifetime imaging in clinical medicine 被引量:2
20
作者 Zhanwen Wang Yanping Zheng +7 位作者 Deqiang Zhao Ziwei Zhao Lixin Liu Artem Pliss Feiqi Zhu Jun Liu Junle Qu Ping Luan 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第1期106-122,共17页
Fluorescence lifetime is not only associated with the molecular structure f fuorophores,but alsostrongly depends on the environment around them,which llows fuorescence lifetime imagingmicroscopy(FLIM)to be used as a t... Fluorescence lifetime is not only associated with the molecular structure f fuorophores,but alsostrongly depends on the environment around them,which llows fuorescence lifetime imagingmicroscopy(FLIM)to be used as a tool for precise measurement of the cell or tisue microenvironment,This review introduces the basic principle of fuorescence lifetime imagingtechnology and its application in clinical medicine,including research and diagnosis of diseases inskin,brain,eyes,mouth,bone,blood vessels and cavity organs,and drug evaluation.As anoninvasive,nontoxic and nonionizing radiation technique,FLIM demonstrates excellent per-formance with high sensitivity and specificity,which allows to determine precise position of thelesion and,thus,has good potential for application in biomedical research and clinical diagnosis. 展开更多
关键词 fluorescence lifetime fluorescence lifetime imaging microscopy clinical medicine
下载PDF
上一页 1 2 125 下一页 到第
使用帮助 返回顶部