Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and o...Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and on 3~6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.展开更多
Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard re...Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard require the accurate prediction of near-field wave characteristics,such as wave amplitude and run-up.However,near-field LGW involves complicated fluid-solid interactions.Furthermore,the wave characteristics are closely related to various aspects,including the geometry and physical features of the slide,river,and body of water.However,the empirical or analytical methods used for rough estimation cannot derive accurate results,especially for deformable landslides,due to their significant geometry changes during the sliding process.In this study,the near-field waves generated by deformable landslides were simulated by smoothed particle hydrodynamics(SPH)based on multi-phase flow.The deformable landslides were generalized as a kind of viscous flow by adopting the Herschel-Bulkley-Papanastasiou(HBP)-based nonNewtonian rheology model.The HBP model is capable of producing deformable landslide dynamics even though the high-speed sliding process is involved.In this study,an idealized experiment case originating from Lituya LGW and a practical case of Gongjiafang LGW were reproduced for verification and demonstration.The simulation results of both cases show satisfactory consistency with the experiment/investigation data in terms of landslide movement and near-field impulsive wave characteristics,thus indicating the applicability and accuracy of the proposed method.Finally,the effects of the HBP model’s rheological parameters on the landslide dynamics and near-field wave characteristics are discussed,providing a parameter calibration method along with sug-gestions for further applications.展开更多
Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studi...Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.展开更多
On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presen...On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield.展开更多
Based on field hydrological,microstructural,and shipboard Acoustic Doppler Current Profiler data,we quantified the spatial and temporal variability of turbulent mixing in the near-field Changjiang(Yangtze)River plume....Based on field hydrological,microstructural,and shipboard Acoustic Doppler Current Profiler data,we quantified the spatial and temporal variability of turbulent mixing in the near-field Changjiang(Yangtze)River plume.The surface dissipation rate(ε)changed by three orders of magnitude from near-field(10^-4 W/kg)to far-field(10^-7 W/kg)plumes,indicating a decrease with distance from the river mouth.Below the river plume,εchanged with depth to 10^-8 W/kg,and increased to 10^-6 W/kg at the layer where the Taiwan Warm Current(TWC)intruded.Thus,εin the near-field plume showed three layers:surface layer in the river plume,middle layer,and lower TWC layer.In the river plume,the strongestεand turbulent diffusivity(Kz)were greater than 10^-4 W/kg and 10^-2 m^2/s,respectively,during strong ebb tides.A three-orders-of-magnitude change inεand Kz was observed in the tidal cycle.The depth of the halocline changed with tidal cycles,and stratification(N 2)varied by one order of magnitude.Stratification in the TWC layer followed the distribution of the halocline,which is opposite to the dissipation structure.Tidal currents led to intrusion and turbulent mixing in the TWC layer.During ebb tides,εand Kz were as strong as those measured in the river plume,but did not last as long.The structure of the velocity shear was similar to the dissipation rate in both the river plume and TWC layer,whereas the velocity shear in the TWC layer did not match the stratification structure.In the high dissipation rate area,the gradient Richardson number was smaller than the critical value(Ri g<1/4).The Ri g structure was consistent with shear and dissipation distributions,indicating that turbulent mixing in the near-field plume was controlled by a combination of shear induced by the discharged river flow and tidal current.展开更多
From the near-field records of aftershock of Datong earthquakes in October 1989 and March 1991,an extra phase between P and S arrivals is found. High-precision epicenter location shows that some of these records are o...From the near-field records of aftershock of Datong earthquakes in October 1989 and March 1991,an extra phase between P and S arrivals is found. High-precision epicenter location shows that some of these records are obtained with the incidental angle less than the critical angle. This excludes the possibility that the extra wave phase is a refractive wave from ground surface. Particle motion analysis shows that the characteristic of the extra wave is similar to that of wave, so it is possible that the extra phase is an S to P convert wave from the bottom of sediment basin. Suppose a low velocity layer covers a high velocity basement. Successful simulation by the synthetic seismogram confirms that the extra phase is an S-P convert wave from the interface of the basin bottom. Modifying the depth of interface at each ray path to match the waveform, we obtain an interface distribution in space. In this way, a brief bottom image could be shown, and the Datong basin has a 'V' shaped bottom.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are ana...In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are analyzed and summarized with the digital data. The results show that the Nepal M_S8. 1 earthquake had greater impact on the Yunnan region,and the macro and micro dynamics of fluids showed significant co-seismic response. The earthquake recording capacity of water level and temperature measurement is significantly higher than that of water radon and water quality to this large earthquake; the maximum amplitude and duration of co-seismic response of water level and water temperature vary greatly in different wells. The changing forms are dominated by fluctuation and step rise in water level,and a rising or falling restoration in water temperature. From the records of the main shock and the maximum strong aftershock,we can see that the greater magnitude of earthquake,the higher ratio of the occurrence of co-seismic response,and in the same well,the larger the response amplitude,as well as the longer the duration. The amplitude and duration of co-seismic response recorded by different instruments in a same well are different. Water temperature co-seismic response almost occurred in wells with water level response,indicating that the well water level and water temperature are closely related in co-seismic response,and the well water temperature seismic response was caused mainly by well water level seismic response.展开更多
Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,...Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.展开更多
文摘Observations of fluid mud were made in the lower North Passage of the Yangtze Estuary in February 2000, on 10~11 August 2000, on 30~31 August 2000 (after two strong typhoons), on 21~24 August 2000 (neap tide) and on 3~6 September 2000 (mean tide) respectively. In situ data show that the fluid mud in this area consists of fine cohesive sediment (median size 7.23 μm). The formation and movement of fluid mud varied during the neap-spring and flood-ebb tidal cycle. Observations suggest that fluid mud phenomena in this area may be categorised in a three-fold manner as slack water, storm and saltwedge features. The thickness of the fluid mud layer of slack water during the neap tide ranged from 0.2 to 0.96 m, whereas during the mean tide, the thickness ranged from 0.17 to 0.73 m, and the thickness of the fluid mud layer was larger during slack water than at the flood peak. Shoals cover an area of 800 km2 with a water depth smaller than 5 m. Erosion of these extensive intertidal mudflats due to storm action provides an abundant sediment source. This is particularly significant in this estuary when the tidal level is lower than 5 m. The lower North Passage is a typical zone of saltwater wedging, so the saltwedge fluid mud has the most extensive spatial range in the estuary.
基金support from the National Natural Sciences Foundation of China(Nos.42177159,42077277,41877253)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUG2106304).
文摘Landslide-generated impulsive waves(LGWs)in reservoir areas can seriously threaten waterway safety as well as hu-man life and properties around the two side slopes.The risk reduction and mitigation of such a hazard require the accurate prediction of near-field wave characteristics,such as wave amplitude and run-up.However,near-field LGW involves complicated fluid-solid interactions.Furthermore,the wave characteristics are closely related to various aspects,including the geometry and physical features of the slide,river,and body of water.However,the empirical or analytical methods used for rough estimation cannot derive accurate results,especially for deformable landslides,due to their significant geometry changes during the sliding process.In this study,the near-field waves generated by deformable landslides were simulated by smoothed particle hydrodynamics(SPH)based on multi-phase flow.The deformable landslides were generalized as a kind of viscous flow by adopting the Herschel-Bulkley-Papanastasiou(HBP)-based nonNewtonian rheology model.The HBP model is capable of producing deformable landslide dynamics even though the high-speed sliding process is involved.In this study,an idealized experiment case originating from Lituya LGW and a practical case of Gongjiafang LGW were reproduced for verification and demonstration.The simulation results of both cases show satisfactory consistency with the experiment/investigation data in terms of landslide movement and near-field impulsive wave characteristics,thus indicating the applicability and accuracy of the proposed method.Finally,the effects of the HBP model’s rheological parameters on the landslide dynamics and near-field wave characteristics are discussed,providing a parameter calibration method along with sug-gestions for further applications.
基金This research was funded by the Fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347)the Natural Science Foundation of Gansu Province,China(20JR10RA231).
文摘Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.
基金The Public Science and Technology Research Funds Projects of Ocean under contract No.201405026the National Key Research and Development Program of China under contract No.2016YFC1401500the Opening Fund of State Key Laboratory of Ocean Engineering under contract No.1604
文摘On September 16, 2015, an earthquake with magnitude ofMw 8.3 occurred 46 km offshore from Illapel, Chile, generating a 4.4-m local tsunami measured at Coquimbo. In this study, the characteristics of tsunami are presented by a combination of analysis of observations and numerical simulation based on sources of USGS and NOAA. The records of 16 DART buoys in deep water, ten tidal gauges along coasts of near-field, and ten coastal gauges in the far-field are studied by applying Fourier analyses. The numerical simulation based on nonlinear shallow water equations and nested grids is carried out to provide overall tsunami propagation scenarios, and the results match well with the observations in deep water and but not well in coasts closed to the epicenter. Due to the short distance to the epicenter and the shelf resonance of southern Peru and Chile, the maximum amplitude ranged from 0.1 m to 2 m, except for Coquimbo. In deep water, the maximum amplitude of buoys decayed from 9.8 cm to 0.8 cm, suggesting a centimeter-scale Pacific-wide tsunami, while the governing period was 13-17 min and 32 min. Whereas in the far-field coastal region, the tsunami wave amplified to be around 0.2 m to 0.8 m, mostly as a result of run-up effect and resonance from coast reflection. Although the tsunami was relatively moderate in deep water, it still produced non-negligible tsunami hazards in local region and the coasts of farfield.
基金the National Natural Science Foundation of China(NSFC)(No.41706012)the National Key Research and Development Program of China(No.2017YFC1403401)+1 种基金the National Natural Science Foundation of China(NSFC)Innovative Group Grant(No.41421005),the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020301)。
文摘Based on field hydrological,microstructural,and shipboard Acoustic Doppler Current Profiler data,we quantified the spatial and temporal variability of turbulent mixing in the near-field Changjiang(Yangtze)River plume.The surface dissipation rate(ε)changed by three orders of magnitude from near-field(10^-4 W/kg)to far-field(10^-7 W/kg)plumes,indicating a decrease with distance from the river mouth.Below the river plume,εchanged with depth to 10^-8 W/kg,and increased to 10^-6 W/kg at the layer where the Taiwan Warm Current(TWC)intruded.Thus,εin the near-field plume showed three layers:surface layer in the river plume,middle layer,and lower TWC layer.In the river plume,the strongestεand turbulent diffusivity(Kz)were greater than 10^-4 W/kg and 10^-2 m^2/s,respectively,during strong ebb tides.A three-orders-of-magnitude change inεand Kz was observed in the tidal cycle.The depth of the halocline changed with tidal cycles,and stratification(N 2)varied by one order of magnitude.Stratification in the TWC layer followed the distribution of the halocline,which is opposite to the dissipation structure.Tidal currents led to intrusion and turbulent mixing in the TWC layer.During ebb tides,εand Kz were as strong as those measured in the river plume,but did not last as long.The structure of the velocity shear was similar to the dissipation rate in both the river plume and TWC layer,whereas the velocity shear in the TWC layer did not match the stratification structure.In the high dissipation rate area,the gradient Richardson number was smaller than the critical value(Ri g<1/4).The Ri g structure was consistent with shear and dissipation distributions,indicating that turbulent mixing in the near-field plume was controlled by a combination of shear induced by the discharged river flow and tidal current.
基金State Key Basic Research Development and Programming Project (95-13-05-02) the Federal Institute for Geosciences and Natural Resources, Germany.
文摘From the near-field records of aftershock of Datong earthquakes in October 1989 and March 1991,an extra phase between P and S arrivals is found. High-precision epicenter location shows that some of these records are obtained with the incidental angle less than the critical angle. This excludes the possibility that the extra wave phase is a refractive wave from ground surface. Particle motion analysis shows that the characteristic of the extra wave is similar to that of wave, so it is possible that the extra phase is an S to P convert wave from the bottom of sediment basin. Suppose a low velocity layer covers a high velocity basement. Successful simulation by the synthetic seismogram confirms that the extra phase is an S-P convert wave from the interface of the basin bottom. Modifying the depth of interface at each ray path to match the waveform, we obtain an interface distribution in space. In this way, a brief bottom image could be shown, and the Datong basin has a 'V' shaped bottom.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
基金sponsored by the special fund of“A Study on Short-term Seismic Tracking of Strong Earthquakes in the Yunnan Area”of the“Ten Key Projects”in Yunnan Provincethe 2016 Earthquake Trend Tracking Task of China Earthquake Administration(2016010305)the 2015 Earthquake Trend Tracking Task of Earthquake Administration of Yunnan Province
文摘In this paper,statistics are taken on the co-seismic response of underground fluid in Yunnan to the Nepal M_S8. 1 earthquake,and the co-seismic response characteristics of the water level and water temperature are analyzed and summarized with the digital data. The results show that the Nepal M_S8. 1 earthquake had greater impact on the Yunnan region,and the macro and micro dynamics of fluids showed significant co-seismic response. The earthquake recording capacity of water level and temperature measurement is significantly higher than that of water radon and water quality to this large earthquake; the maximum amplitude and duration of co-seismic response of water level and water temperature vary greatly in different wells. The changing forms are dominated by fluctuation and step rise in water level,and a rising or falling restoration in water temperature. From the records of the main shock and the maximum strong aftershock,we can see that the greater magnitude of earthquake,the higher ratio of the occurrence of co-seismic response,and in the same well,the larger the response amplitude,as well as the longer the duration. The amplitude and duration of co-seismic response recorded by different instruments in a same well are different. Water temperature co-seismic response almost occurred in wells with water level response,indicating that the well water level and water temperature are closely related in co-seismic response,and the well water temperature seismic response was caused mainly by well water level seismic response.
基金supported by the National Natural Science Foundation of China(41922023,41830428,42173038,41973055,and 42130109)the Research Funds for the Frontiers Science Center for Critical Earth Material Cycling(Nanjing University,China)the Fundamental Research Funds for the Central Universities,China(2022300192).
文摘Most economically important tungsten(W)deposits are of magmatic-hydrothermal origin.The species and partitioning of W during fluid exsolution,considered to be the controlling factors for the formation of ore deposits,are thus of great significance to investigate.However,this issue has not been well addressed mainly due to the significant difference in reported partition coefficients(e.g.,from strongly incompatible to strongly compatible)between fluid and melt(D_(W)^(fluid/melt)).Here,we used an in situ Raman spectroscopic approach to describe the W speciation,and to quantitatively determine the Dfluid/melt of individual and total W species in granite melts and coexisting Na2WO4 solutions at elevated temperatures(T;700–800C)and pressures(P;0.35–1.08 GPa).Results show that WO_(4)^(2-)and HWO4are predominant W species,and the fractions of these two species are similar in melt and coexisting fluid.The partitioning behaviors of WO_(4)^(2-)and HWO4are comparable,exhibiting strong enrichment in the fluid.The total DW fluid/melt ranges from 8.6 to 37.1.Specifically,DW fluid/melt decreases with rising T–P,indicating that shallow exsolution favors enrichment of W in evolved fluids.Furthermore,Rayleigh fractionation modeling based on the obtained D_(W)^(fluid/melt)data was used to describe the fluid exsolution processes.Our results strongly support that fluid exsolution can serve as an important mechanism to generate W-rich oreforming fluids.This study also indicates that in situ approach can be used to further investigate the geochemical behavior of ore-forming elements during the magmatic-hydrothermal transition,especially for rare metals associated with granite and pegmatite.