A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if t...A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if there does not extst a STDF g: V(G)→{-1,1}, f≠g, for which g ( v )≤f( v ) for every v∈V( G ). The weight of a STDF is the sum of its function values over all vertices. The signed total domination number of G is the minimum weight of a STDF of G, while the upper signed domination number of G is the maximum weight of a minimal STDF of G, In this paper, we present sharp upper bounds on the upper signed total domination number of a nearly regular graph.展开更多
文摘A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if there does not extst a STDF g: V(G)→{-1,1}, f≠g, for which g ( v )≤f( v ) for every v∈V( G ). The weight of a STDF is the sum of its function values over all vertices. The signed total domination number of G is the minimum weight of a STDF of G, while the upper signed domination number of G is the maximum weight of a minimal STDF of G, In this paper, we present sharp upper bounds on the upper signed total domination number of a nearly regular graph.