In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible ...In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible extrusion technology was put forward. The theory, optimization algorithm and technology for sand mold nearnet forming were studied. Experimental results show that the sand mold forming efficiency can be increased by 34%, and the molding sand can be reduced by 44%. The method for near-net forming of a sand mold with digital flexible extrusion technology can effectively promote the application of digital patternless casting technology in the mass production of castings and thus greatly improves the efficiency and automation of sand mold manufacturing.展开更多
Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and...Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.展开更多
Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply...Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.展开更多
To apply the multi-point forming technology to the field of tube processing,the process of multi-point forming for tube is studied.Numerical simulation for the process of multi-point forming for tube is achieved by us...To apply the multi-point forming technology to the field of tube processing,the process of multi-point forming for tube is studied.Numerical simulation for the process of multi-point forming for tube is achieved by using elastic-plastic FEM in ABAQUS.During simulation,reasonable coefficient of mass scaling and friction model of penalty function are used.The influence of several major technological parameters on the process is analyzed.When the tube diameter is 60 mm and the forming curvature radius is 1000 mm,the distortion rate of cross-section and the absolute forming error gradually decrease with the increasing of tube wall thickness;However,when the tube wall thickness is constant,the smaller the curvature radius,the larger the distortion rate of cross-section,but as to forming part,its absolute forming error becomes smaller.展开更多
This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in Chin...This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in China. The history and roadmap of the compact IEBAs used todrive high-power microwave (HPM) devices at NUDT are reviewed. The properties of both de-ionized water and glycerin as energy storagemedia are presented. Research into the breakdown properties of liquid dielectrics and the desire to maximize energy storage have resulted in theinvention of several coaxial PFLs with different electromagnetic structures, which are detailed in this paper. These high energy density liquidPFLs have been used to increase the performance of IEBA subsystems, based on which the SPARK (Single Pulse Accelerator with spark gaps)and HEART (High Energy-density Accelerator with Repetitive Transformer) series of IEBAs were constructed. This paper also discusses howthese compact IEBAs have been used to drive typical HPM devices and concludes by summarizing the associated achievements and theconclusions that can be drawn from the results.展开更多
To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio ...To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio (MSLR) is proposed for broadband beam-forming. This weighted method can be implemented by using the following steps. Firstly, optimize the spatial spectrum of each frequency unit by the second-order cone programming (SOCP), and obtain the optimized spatial spectrum with lower side lobe. Secondly, construct weighting factors based on the MSLR of the optimized spatial spectrums to from weight factors. Lastly, cumulate the spatial spectrum of each frequency unit via the weight statistical method of this paper. This method can restrain the disturbance of background noise, enhance the output signal-to-noise ratio (SNR), and overcome the difficulty of traditional four-dimensional display. The theoretical analysis and simulation results both verify that this method can well enhance the spatial spectrum of line spectrum units, restrain the spatial spectrum of background noise units, and improve the performance of the broadband beam-forming.展开更多
Curriculum has achieved a varied record of success in influencing health based practices and developing professional skills. Designing and implementing an effective radiologic technology educational program curriculum...Curriculum has achieved a varied record of success in influencing health based practices and developing professional skills. Designing and implementing an effective radiologic technology educational program curriculum requires a disciplined pedagogical approach where the instructor performs a thorough situational analysis, develops a theory based and pragmatic learning plan, and implements a course of study in accordance with the established educational guidelines and requirements. Diligent efforts are needed to enhance the relationship amongst curriculum developers and evaluators. The collection of information at the formative stage: followed by process evaluation to assess implementation as the curriculum progresses, and summative evaluation to assess impact is required for accreditation of program in the United States by the Joint Review Committee for Education in Radiologic Technology. Formative evaluation research is used to enhance effectiveness of the curriculum, guide development of teaching and learning strategies, and reveal promising and ineffective components of curriculum. This review of literature provides evidence as to what is considered to be the best practice in the program evaluation/accreditation process.展开更多
Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superall...Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique(for making turbine disk) are proposed and studied.Subsequently, advanced technologies like electrode-induction-melting gas atomization(EIGA), and spark-plasma discharge spheroidization(SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming.展开更多
Lightweight design is one of the current key drivers to reduce the energy consumption of vehicles.Design methodologies for lightweight components,strategies utilizing materials with favorable specific properties and h...Lightweight design is one of the current key drivers to reduce the energy consumption of vehicles.Design methodologies for lightweight components,strategies utilizing materials with favorable specific properties and hybrid materials are used to increase the performance of parts for automotive applications.In this paper,various forming processes to produce light parts are described.Material lightweight design is discussed,covering the manufacturing processes to produce hybrid components like fiber-metal,polymer-metal and metal-metal composites,which can be used in subsequent deep drawing or combined forming processes.Approaches to increasing the specific strength and stiffness with thermomechanical forming processes as well as the in situ control of the microstructure of such components are presented.Structure lightweight design discusses possibilities to plastically form high-strength or high-performance materials like magnesium or titanium in sheet,profile and tube forming operations.To join those materials and/or dissimilar materials,new joining by forming technologies are shown.To economically produce lightweight parts with gears or functional elements,incremental sheet-bulk metal forming is pre-sented.As an important part property,the damage evolution during the forming operations will be discussed to enable even lighter parts through a more reliable design.New methods for predicting and tailoring the mechanical properties like strength and residual stresses will be shown.The possibilities of system lightweight design with forming technologies are presented.A combination of additive manufacturing and forming to produce highly complex parts with integrated functions will be shown.The integration of functions by a hot extrusion process for the manufacturing of shape memory alloys is presented.An in-depth understanding of the newly developed processes,methodologies and effects allows for a more accurate dimen-sioning of components.This facilitates a reduction in the total mass and an increasing performance of vehicle components.展开更多
Mg matrix composites with SiC particles ranging from 5vol%-25vol% were prepared using stirring casting method. Die casting, squeezing casting, and extrusion were applied for inhibiting or eliminating the defects such ...Mg matrix composites with SiC particles ranging from 5vol%-25vol% were prepared using stirring casting method. Die casting, squeezing casting, and extrusion were applied for inhibiting or eliminating the defects such as gas porosity and shrinkage void. Through die casting and squeezing casting, most of the defects in Mg matrix composites could be eliminated, but the mechanical properties were improved limitedly. On the other hand, after hot extrusion, not only most of the defects of as-cast composites ingots were eliminated, but also the mechanical properties were improved markedly. With the addition of SiC, the tensile strength, yield strength and elastic modulus of as extrusion SiCp/AZ61 composites increased remarkably, and the elongation decreased obviously.展开更多
Algorithm-based technologies are promoting the arrival of legal singularity-a time node when the transformation of legal form happens.Frontier researches have demonstrated that artificial intelligence and big data tec...Algorithm-based technologies are promoting the arrival of legal singularity-a time node when the transformation of legal form happens.Frontier researches have demonstrated that artificial intelligence and big data technology will drive the reform of legal system.This article puts forward a new academic model“the compliance society”,which can be defined as a society where all legal subjects abide by the law proactively.The concept is a novel vision of the society of future based on the maximum utilization of modern legal technology.We first explore the feasibility of constructing a compliance society,and then use cost-benefit analysis to assess the possible socio-economic effects.展开更多
As a practical art, interior design is related to the technological beauty closely. Technological beauty is the combination of technology and art, there will be important meaning by researching materials,function, and...As a practical art, interior design is related to the technological beauty closely. Technological beauty is the combination of technology and art, there will be important meaning by researching materials,function, and forms of beauty in interior design and green interior design.展开更多
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51525503)
文摘In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible extrusion technology was put forward. The theory, optimization algorithm and technology for sand mold nearnet forming were studied. Experimental results show that the sand mold forming efficiency can be increased by 34%, and the molding sand can be reduced by 44%. The method for near-net forming of a sand mold with digital flexible extrusion technology can effectively promote the application of digital patternless casting technology in the mass production of castings and thus greatly improves the efficiency and automation of sand mold manufacturing.
文摘Compared with the in-place pile, the pore-forming pouring pile is more simple and convenient, with a wider range of construction. In the actual construction process, it is able to pass through complex bottom layer and water layer underground without very high requirements in equipment. The actual bearing capacity of single pile is very strong, so that it can be better to adapt to the actual needs of different scales or the different geological conditions in building. And it has been promoted and used greatly in building construction work [1]. This paper introduces the concept of the pore-forming pouring pile technology, analyzes the pore-forming construction technology and the pile construction technology, then talks about prevention problems of the pore-forming pouring pile construction in House Building Project, at last draws a conclusion that the pore-forming pouring pile technology is the most basic construction technology and is the most effective and convenient way of construction.
文摘Rare earth resources are relatively scarce worldwide, but their global consumption is increasing year-by-year. At present, China has about 36% of the global rare earth reserves, but provides 90% of the world's supply, which has generally met world demand and promoted the development of the world economy. In order to continuously and stably supply rare earths to international markets, the Chinese Government has financially supported the Institute of Multipurpose Utilization of Mineral Resources within the China Geological Survey to study the utilization of low-grade rare earth ores. Following many years of experimental research, the project has developed a new technology entitled "Flotation to Form Agglomerates and then Magnetic Separation", which will bring a technological revolution to the world's light rare earth ore dressing.
基金Sponsored by the Specific Targeted Research Projects,the 6th Framework Project,EU(Grant No.AST5-CT-2006-030877)
文摘To apply the multi-point forming technology to the field of tube processing,the process of multi-point forming for tube is studied.Numerical simulation for the process of multi-point forming for tube is achieved by using elastic-plastic FEM in ABAQUS.During simulation,reasonable coefficient of mass scaling and friction model of penalty function are used.The influence of several major technological parameters on the process is analyzed.When the tube diameter is 60 mm and the forming curvature radius is 1000 mm,the distortion rate of cross-section and the absolute forming error gradually decrease with the increasing of tube wall thickness;However,when the tube wall thickness is constant,the smaller the curvature radius,the larger the distortion rate of cross-section,but as to forming part,its absolute forming error becomes smaller.
基金This work was supported by the National Natural Science Foundation of China under Grant No.51677190the Hunan Provincial Natural Science Foundation of China under Grant No.2017JJ1005.
文摘This paper provides a review of the compact intense electron-beam accelerators (IEBAs) based on liquid pulse forming lines (PFLs) that havebeen developed at the National University of Defense Technology (NUDT) in China. The history and roadmap of the compact IEBAs used todrive high-power microwave (HPM) devices at NUDT are reviewed. The properties of both de-ionized water and glycerin as energy storagemedia are presented. Research into the breakdown properties of liquid dielectrics and the desire to maximize energy storage have resulted in theinvention of several coaxial PFLs with different electromagnetic structures, which are detailed in this paper. These high energy density liquidPFLs have been used to increase the performance of IEBA subsystems, based on which the SPARK (Single Pulse Accelerator with spark gaps)and HEART (High Energy-density Accelerator with Repetitive Transformer) series of IEBAs were constructed. This paper also discusses howthese compact IEBAs have been used to drive typical HPM devices and concludes by summarizing the associated achievements and theconclusions that can be drawn from the results.
基金supported by the National Natural Science Foundation of China(Grant No.61372180)the National Key Scientific Instrument Equipment Development Project of China(Grant No.2013YQ140431)
文摘To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio (MSLR) is proposed for broadband beam-forming. This weighted method can be implemented by using the following steps. Firstly, optimize the spatial spectrum of each frequency unit by the second-order cone programming (SOCP), and obtain the optimized spatial spectrum with lower side lobe. Secondly, construct weighting factors based on the MSLR of the optimized spatial spectrums to from weight factors. Lastly, cumulate the spatial spectrum of each frequency unit via the weight statistical method of this paper. This method can restrain the disturbance of background noise, enhance the output signal-to-noise ratio (SNR), and overcome the difficulty of traditional four-dimensional display. The theoretical analysis and simulation results both verify that this method can well enhance the spatial spectrum of line spectrum units, restrain the spatial spectrum of background noise units, and improve the performance of the broadband beam-forming.
文摘Curriculum has achieved a varied record of success in influencing health based practices and developing professional skills. Designing and implementing an effective radiologic technology educational program curriculum requires a disciplined pedagogical approach where the instructor performs a thorough situational analysis, develops a theory based and pragmatic learning plan, and implements a course of study in accordance with the established educational guidelines and requirements. Diligent efforts are needed to enhance the relationship amongst curriculum developers and evaluators. The collection of information at the formative stage: followed by process evaluation to assess implementation as the curriculum progresses, and summative evaluation to assess impact is required for accreditation of program in the United States by the Joint Review Committee for Education in Radiologic Technology. Formative evaluation research is used to enhance effectiveness of the curriculum, guide development of teaching and learning strategies, and reveal promising and ineffective components of curriculum. This review of literature provides evidence as to what is considered to be the best practice in the program evaluation/accreditation process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50974016 and 50071014)
文摘Powder metallurgy(PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique(for making turbine disk) are proposed and studied.Subsequently, advanced technologies like electrode-induction-melting gas atomization(EIGA), and spark-plasma discharge spheroidization(SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming.
基金Open Access funding provided by Projekt DEAL.The authors thank the German Research Foundation(DFG)for the financial support of the ongoing projects:Collaborative Research Centre TRR 188“Damage Controlled Forming Processes”(Project number 278868966-TRR 188)Forming of additively manufactured sandwich sheets with optimized core structures(Project number 317137194)+5 种基金Process combination of single point incremental forming and laser powder deposition for the manufacturing of lightweight components(Project number 385276922)Joining by die-less hydroforming with outer pressurization(Project number 350070123)Process combination of combined deep drawing and cold forging(Project number 289596321)Kinematic profile bending with locally heated cross section(Project number 408302329)Product property controlled multi-stage hot sheet metal forming(Project number 424334660)TRR 73:Manufacturing of Complex Functional Components with Variants by Using a New Sheet Metal Forming Process-Sheet-Bulk Metal Forming(Project number 68237143).
文摘Lightweight design is one of the current key drivers to reduce the energy consumption of vehicles.Design methodologies for lightweight components,strategies utilizing materials with favorable specific properties and hybrid materials are used to increase the performance of parts for automotive applications.In this paper,various forming processes to produce light parts are described.Material lightweight design is discussed,covering the manufacturing processes to produce hybrid components like fiber-metal,polymer-metal and metal-metal composites,which can be used in subsequent deep drawing or combined forming processes.Approaches to increasing the specific strength and stiffness with thermomechanical forming processes as well as the in situ control of the microstructure of such components are presented.Structure lightweight design discusses possibilities to plastically form high-strength or high-performance materials like magnesium or titanium in sheet,profile and tube forming operations.To join those materials and/or dissimilar materials,new joining by forming technologies are shown.To economically produce lightweight parts with gears or functional elements,incremental sheet-bulk metal forming is pre-sented.As an important part property,the damage evolution during the forming operations will be discussed to enable even lighter parts through a more reliable design.New methods for predicting and tailoring the mechanical properties like strength and residual stresses will be shown.The possibilities of system lightweight design with forming technologies are presented.A combination of additive manufacturing and forming to produce highly complex parts with integrated functions will be shown.The integration of functions by a hot extrusion process for the manufacturing of shape memory alloys is presented.An in-depth understanding of the newly developed processes,methodologies and effects allows for a more accurate dimen-sioning of components.This facilitates a reduction in the total mass and an increasing performance of vehicle components.
基金Funded by the Program for New Century Excellent Talents in University(NCET-12-1040)the National Natural Science Foundation of China(Nos.50901048 and 51174143)+2 种基金the Key Project of Chinese Ministry of Education(No.2012017)the Program Foundation of Ministry of Education of China(No.20101402110008)Natural Science Foundation of Shanxi(No.2010021022-5)
文摘Mg matrix composites with SiC particles ranging from 5vol%-25vol% were prepared using stirring casting method. Die casting, squeezing casting, and extrusion were applied for inhibiting or eliminating the defects such as gas porosity and shrinkage void. Through die casting and squeezing casting, most of the defects in Mg matrix composites could be eliminated, but the mechanical properties were improved limitedly. On the other hand, after hot extrusion, not only most of the defects of as-cast composites ingots were eliminated, but also the mechanical properties were improved markedly. With the addition of SiC, the tensile strength, yield strength and elastic modulus of as extrusion SiCp/AZ61 composites increased remarkably, and the elongation decreased obviously.
文摘Algorithm-based technologies are promoting the arrival of legal singularity-a time node when the transformation of legal form happens.Frontier researches have demonstrated that artificial intelligence and big data technology will drive the reform of legal system.This article puts forward a new academic model“the compliance society”,which can be defined as a society where all legal subjects abide by the law proactively.The concept is a novel vision of the society of future based on the maximum utilization of modern legal technology.We first explore the feasibility of constructing a compliance society,and then use cost-benefit analysis to assess the possible socio-economic effects.
文摘As a practical art, interior design is related to the technological beauty closely. Technological beauty is the combination of technology and art, there will be important meaning by researching materials,function, and forms of beauty in interior design and green interior design.