Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturb...Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturbance on the structure of needle coke. The structure of needle coke is characterized by scanning electron microscope and x-ray diffractometer, and the influence mechanism is analysed. Results showed that the structure and property of needle coke could be effectively improved by magnetic field and ultrasonic cavitations, such as degree of order, degree of graphitization and crystallization. Comparatively speaking, the effect of magnetic field was greater. The graphitization degree of needle coke prepared under the effect of magnetic field is up to 45.35%.展开更多
Molecular simulations were performed to investigate the molecular structural effects on needle coke mesophase stacking.The simulation results showed that the stacking states of anthracene trimer and tetramer accumulat...Molecular simulations were performed to investigate the molecular structural effects on needle coke mesophase stacking.The simulation results showed that the stacking states of anthracene trimer and tetramer accumulations were orderly,while the stacking states of anthracene dimer,pentamer,and hexamer accumulations were disorderly.Anthracene trimer and tetramer in the model compounds were two of the most ideal needle coke mesophase constituents.It was also found that the introduction of methyl side chains in anthracene trimer derivatives was not conducive to the formation of a mesophase crystal.To sum up,the molecules which had similar structures to anthracene trimer or tetramer with no alkyl chains are ideal constituents of needle coke mesophase.展开更多
The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially...The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.展开更多
The current technology for producing the petroleum needle coke is apt to cause overflow of feedstock from the coke drums, instability in operation of coking unit, low mechanical strength of petroleum coke, and high pe...The current technology for producing the petroleum needle coke is apt to cause overflow of feedstock from the coke drums, instability in operation of coking unit, low mechanical strength of petroleum coke, and high percentage of coke powder, leading to difficulties in improving the overall quality of needle coke. Therefore, we have developed a new technology for producing the needle coke,featuring the manipulation of temperature range in a narrow scale at high pressure coupled with feedstock alternations. This new kind of technology has been successfully applied in a 60kt/a commercial coking unit. Provided that demand for the feedstock quality is satisfied, petroleum needle coke meeting the international quality standard can be manufactured using RIPP's technology for producing petroleum needle coke.展开更多
A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+eth...A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+ethylene carbonate/diethylene carbonate|graphite cells, using an in situ X Ray diffraction (XRD) technique.The study of Li C intercalation processes of the graphitized coke reveals that there are three major types of intercalation behavior.The first is uniformly intercalated at all Li C compounds in graphitized coke heated at 2 250℃;the second is obviously staging phenomenon during intercalation for the graphitized coke heated at 2 750℃; the third is cointercalation of solvated Li ion at high potential (>0.3V) and then lithium electrochemical intercalation at lower potential for that heated at 3 000℃, resulting in the decrease of capacity and efficiency of graphite negative electrode for lithium ion secondary battery.展开更多
The permeability of a new investment casting mold system prepared by adding needle cokes has been investigated in this work. The permeability tests of the molds were carried out at the temperature of 25—1 200?C.The r...The permeability of a new investment casting mold system prepared by adding needle cokes has been investigated in this work. The permeability tests of the molds were carried out at the temperature of 25—1 200?C.The results showed that the addition of needle cork could significally increase the permeability of the molds by a factor of about 4 because the burning of needle cokes increased the porosities of the molds. Meanwhile, the needle coke modified molds exhibited higher green strength and greater thickness both on flat section and at sharp edges compared with the full fused silica mold. Taking account of the mold thickness, the needle coke modified molds had increased adjusted fracture load(AFL) by a factor of about 2 at the test temperature of 25—1 200?C. The addition of needle coke significally improved the permeability of the molds during both autoclaving and casting,and optimized the correlation between the permeability and green strength of the molds.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 20843002)the Scientific and Technological Foundation of Shanxi Province of China (Grant No. 20080321065)
文摘Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturbance on the structure of needle coke. The structure of needle coke is characterized by scanning electron microscope and x-ray diffractometer, and the influence mechanism is analysed. Results showed that the structure and property of needle coke could be effectively improved by magnetic field and ultrasonic cavitations, such as degree of order, degree of graphitization and crystallization. Comparatively speaking, the effect of magnetic field was greater. The graphitization degree of needle coke prepared under the effect of magnetic field is up to 45.35%.
基金Funding provided by the Molecular Simulation Key Laboratory at SINOPEC Research Institute of Petroleum Processing is gratefully acknowledged.
文摘Molecular simulations were performed to investigate the molecular structural effects on needle coke mesophase stacking.The simulation results showed that the stacking states of anthracene trimer and tetramer accumulations were orderly,while the stacking states of anthracene dimer,pentamer,and hexamer accumulations were disorderly.Anthracene trimer and tetramer in the model compounds were two of the most ideal needle coke mesophase constituents.It was also found that the introduction of methyl side chains in anthracene trimer derivatives was not conducive to the formation of a mesophase crystal.To sum up,the molecules which had similar structures to anthracene trimer or tetramer with no alkyl chains are ideal constituents of needle coke mesophase.
基金supported by the National Natural Science Foundation of China(21776309,22122807 and 21706283)。
文摘The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.
文摘The current technology for producing the petroleum needle coke is apt to cause overflow of feedstock from the coke drums, instability in operation of coking unit, low mechanical strength of petroleum coke, and high percentage of coke powder, leading to difficulties in improving the overall quality of needle coke. Therefore, we have developed a new technology for producing the needle coke,featuring the manipulation of temperature range in a narrow scale at high pressure coupled with feedstock alternations. This new kind of technology has been successfully applied in a 60kt/a commercial coking unit. Provided that demand for the feedstock quality is satisfied, petroleum needle coke meeting the international quality standard can be manufactured using RIPP's technology for producing petroleum needle coke.
文摘A needle coke was graphitized at different heat treatment temperature (2 000℃ to 3 000℃). The electrochemical intercalation mechanism of Li into the graphitized coke has been studied in Li|1 mol·L 1 LiClO 4+ethylene carbonate/diethylene carbonate|graphite cells, using an in situ X Ray diffraction (XRD) technique.The study of Li C intercalation processes of the graphitized coke reveals that there are three major types of intercalation behavior.The first is uniformly intercalated at all Li C compounds in graphitized coke heated at 2 250℃;the second is obviously staging phenomenon during intercalation for the graphitized coke heated at 2 750℃; the third is cointercalation of solvated Li ion at high potential (>0.3V) and then lithium electrochemical intercalation at lower potential for that heated at 3 000℃, resulting in the decrease of capacity and efficiency of graphite negative electrode for lithium ion secondary battery.
基金the 13th Five-Year Common Technology Equipment Development Project(No.41423040206)the Industry-University-Research Cooperation Annual Plan of Shanghai(No.CXY2016004)
文摘The permeability of a new investment casting mold system prepared by adding needle cokes has been investigated in this work. The permeability tests of the molds were carried out at the temperature of 25—1 200?C.The results showed that the addition of needle cork could significally increase the permeability of the molds by a factor of about 4 because the burning of needle cokes increased the porosities of the molds. Meanwhile, the needle coke modified molds exhibited higher green strength and greater thickness both on flat section and at sharp edges compared with the full fused silica mold. Taking account of the mold thickness, the needle coke modified molds had increased adjusted fracture load(AFL) by a factor of about 2 at the test temperature of 25—1 200?C. The addition of needle coke significally improved the permeability of the molds during both autoclaving and casting,and optimized the correlation between the permeability and green strength of the molds.