Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in ter...Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in terrestrial communications.Accordingly,the Consultative Committee for Space Data Systems(CCSDS) developed CCSDS File Delivery Protocol(CFDP),which sets standards of efficient file delivery service capable of transferring files to and from mass memory located in the space segment.In CFDP,four optional acknowledge modes are supported to make the communication more reliable.In this paper,we gave a general introduction of typical communication process in CFDP and analysis of its four Negative Acknowledgement(NAK) modes on the respect of file delivery delay and times of retransmission.We found out that despite the shortest file delivery delay,immediate NAK mode suffers from the problem that frequent retransmission may probably lead to network congestion.Thus,we proposed a new mode,the error counter-based NAK mode.By simulation of the case focused on the link between a deep space probe on Mars and a ter-restrial station on Earth,we concluded that error counter-based NAK mode has successfully reduced the retransmission times at negligible cost of certain amount of file delivery delay.展开更多
We show that an aggregated Interest in Named Data Networking (NDN) may fail to retrieve desired data since the Interest previously sent upstream for the same content is judged as a duplicate one and then dropped by an...We show that an aggregated Interest in Named Data Networking (NDN) may fail to retrieve desired data since the Interest previously sent upstream for the same content is judged as a duplicate one and then dropped by an upstream node due to its multipath forwarding. Furthermore, we propose NDRUDAF, a NACK based mechanism that enhances the Interest forwarding and enables Detection and fast Recovery from such Unanticipated Data Access Failure. In the NDN enhanced with NDRUDAF, the router that aggregates the Interest detects such unanticipated data access failure based on a negative acknowledgement from the upstream node that judges the Interest as a duplicate one. Then the router retransmits the Interest as soon as possible on behalf of the requester whose Interest is aggregated to fast recover from the data access failure. We qualitatively and quantitatively analyze the performance of the NDN enhanced with our proposed NDRUDAF and compare it with that of the present NDN. Our experimental results validate that NDRUDAF improves the system performance in case of such unanticipated data access failure in terms of data access delay and network resource utilization efficiency at routers.展开更多
In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shar...In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shared channel) data.Placeholders are inserted into the UCI to scramble in a way that maximizes the Euclidean distance of modulation symbols.Considering the attribution of encoding with placeholders,a simple and efficient decoding scheme is proposed in this paper.As shown in our simulation results,improved performance is achieved.展开更多
文摘Deep space communication has its own features such as long propagation delays,heavy noise,asymmetric link rates,and intermittent connectivity in space,therefore TCP/IP protocol cannot perform as well as it does in terrestrial communications.Accordingly,the Consultative Committee for Space Data Systems(CCSDS) developed CCSDS File Delivery Protocol(CFDP),which sets standards of efficient file delivery service capable of transferring files to and from mass memory located in the space segment.In CFDP,four optional acknowledge modes are supported to make the communication more reliable.In this paper,we gave a general introduction of typical communication process in CFDP and analysis of its four Negative Acknowledgement(NAK) modes on the respect of file delivery delay and times of retransmission.We found out that despite the shortest file delivery delay,immediate NAK mode suffers from the problem that frequent retransmission may probably lead to network congestion.Thus,we proposed a new mode,the error counter-based NAK mode.By simulation of the case focused on the link between a deep space probe on Mars and a ter-restrial station on Earth,we concluded that error counter-based NAK mode has successfully reduced the retransmission times at negligible cost of certain amount of file delivery delay.
基金supported in part by the National Natural Science Foundation of China (No.61602114)part by the National Key Research and Development Program of China (2017YFB0801703)+1 种基金part by the CERNET Innovation Project (NGII20170406)part by Jiangsu Provincial Key Laboratory of Network and Information Security (BM2003201)
文摘We show that an aggregated Interest in Named Data Networking (NDN) may fail to retrieve desired data since the Interest previously sent upstream for the same content is judged as a duplicate one and then dropped by an upstream node due to its multipath forwarding. Furthermore, we propose NDRUDAF, a NACK based mechanism that enhances the Interest forwarding and enables Detection and fast Recovery from such Unanticipated Data Access Failure. In the NDN enhanced with NDRUDAF, the router that aggregates the Interest detects such unanticipated data access failure based on a negative acknowledgement from the upstream node that judges the Interest as a duplicate one. Then the router retransmits the Interest as soon as possible on behalf of the requester whose Interest is aggregated to fast recover from the data access failure. We qualitatively and quantitatively analyze the performance of the NDN enhanced with our proposed NDRUDAF and compare it with that of the present NDN. Our experimental results validate that NDRUDAF improves the system performance in case of such unanticipated data access failure in terms of data access delay and network resource utilization efficiency at routers.
基金Funded by the Fundamental Research Funds for the Central Universities (XDJXS11161157)
文摘In 3GPP (the 3rd Generation Partnership Project) LTE (Long Term Evolution) systems,the physical uplink shared channel (PUSCH) conveys uplink control information (UCI) back to eNodeB with or without UL-SCH (uplink shared channel) data.Placeholders are inserted into the UCI to scramble in a way that maximizes the Euclidean distance of modulation symbols.Considering the attribution of encoding with placeholders,a simple and efficient decoding scheme is proposed in this paper.As shown in our simulation results,improved performance is achieved.