期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Thermally insulating and fire-retardant bio-mimic structural composites with a negative Poisson's ratio for battery protection 被引量:2
1
作者 Fengyin Du Zuquan Jin +9 位作者 Ruizhe Yang Menglong Hao Jiawei Wang Gang Xu Wenqiang Zuo Zifan Geng Hao Pan Tian Li Wei Zhang Wei She 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期83-96,共14页
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a... Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. 展开更多
关键词 battery protection negative poisson's ratio thermal insulation TOUGHNESS wood-inspired materials
下载PDF
Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson's ratio 被引量:2
2
作者 Qiao ZHANG Yuxin SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1457-1486,共30页
This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relatio... This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial.First,the NPR and NTE of the metamaterial are derived analytically based on energy conservation.The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method(FEM).Subsequently,the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity.The differential quadrature(DQ)FEM(DQFEM)is utilized to obtain the numerical solutions.It is shown that NPR and NTE can enhance the global stiffness of sandwich structures.The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress,natural frequency,and critical buckling load. 展开更多
关键词 negative poisson's ratio(NPR) negative thermal expansion(NTE) sand-wich plate VIBratioN BUCKLING
下载PDF
Switchable hidden spin polarization and negative Poisson's ratio in two-dimensional antiferroelectric wurtzite crystals
3
作者 Zhuang Ma Jingwen Jiang +8 位作者 Gui Wang Peng Zhang Yiling Sun Zhengfang Qian Jiaxin Zheng Wen Xiong Fei Wang Xiuwen Zhang Pu Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期72-80,共9页
Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by... Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by a certain degree in the 2D plane.Such 2D functional materials are realized by stacking the exfoliated wurtzite(wz)monolayers with“self-healable”nature,which host strongly coupled ferroelasticity/antiferroelectricity and benign stability.The AFE candidates,i.e.,Zn X and Cd X(X=S,Se,Te),are all semiconductors with direct bandgap atΓpoint,which harbors switchable antiferroelectricity and ferroelasticity with low transition barriers,hidden spin polarization,as well as giant in-plane negative Poisson's ratio(NPR),enabling the co-tunability of hidden spin characteristics and auxetic magnitudes via AFE switching.The 2D AFE wz crystals provide a platform to probe the interplay of 2D antiferroelectricity,ferroelasticity,NPR,and spin effects,shedding new light on the rich physics and device design in wz semiconductors. 展开更多
关键词 wurtzite crystal MULTIFERROICS hidden spin polarization negative poisson's ratio
下载PDF
Machine learning-based stiffness optimization of digital composite metamaterials with desired positive or negative Poisson's ratio
4
作者 Xihang Jiang Fan Liu Lifeng Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期424-431,共8页
Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness ... Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization. 展开更多
关键词 Digital composite materials METAMATERIALS Machine learning Convolutional neural network(CNN) poisson's ratio STIFFNESS
下载PDF
Negative Poisson's ratio and peripheral strain of an NPR anchor cable 被引量:1
5
作者 TAO Zhi-gang XU Hao-tian +3 位作者 REN Shu-lin GUO Long-ji QIN Ke ZHU Yi-fei 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2435-2448,共14页
Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poi... Materials with a negative Poisson’s ratio effect perform significantly better than traditional materials for rock mass impact resistance,shear resistance,and energy absorption.Based on these advantages,a negative Poisson’s ratio anchor cable(NPR anchor cable)with high elongation and constant resistance was developed and successfully applied in the field of mine disaster control.However,theoretical and experimental research on the negative Poisson’s ratio effect and peripheral strain characteristics of NPR anchor cables is currently incomplete.This study used several theories and methods,such as static tensile,peripheral strain measurement,and static negative Poisson’s ratio measurement,to investigate the radial deformation law of an NPR anchor cable and the negative Poisson’s ratio characteristics.Experimental results elucidated constant resistance changes in an NPR anchor cable during operation,the motion of the constant resistance body in the constant resistance sleeve,and the deformation law of the constant resistance sleeve.Negative Poisson’s ratio characteristics of the NPR anchor cable and its superior energy absorption characteristics were verified and it provided a theoretical and experimental basis for energy absorption mechanisms of an NPR anchor cable. 展开更多
关键词 NPR anchor cable Static tensile test negative Poisson’s ratio Energy absorption
下载PDF
Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method
6
作者 Weida Wu Yiqiang Wang +1 位作者 Zhonghao Gao Pai Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2001-2026,共26页
Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching... Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy. 展开更多
关键词 Topology optimization microstructural design negative Poisson’s ratio large deformation
下载PDF
Parametric design strategy of a novel cylindrical negative Poisson's ratio jounce bumper for ideal uniaxial compression load-displacement curve 被引量:4
7
作者 WANG YuanLong ZHAO WanZhong +2 位作者 ZHOU Guan WANG ChunYan GAO Qiang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第10期1611-1620,共10页
A cylindrical negative Poisson's ratio(CNPR) structure based on two-dimensional double-arrow negative Poisson's ratio(NPR)structure was introduced in this paper. The CNPR structure has excellent stiffness, dam... A cylindrical negative Poisson's ratio(CNPR) structure based on two-dimensional double-arrow negative Poisson's ratio(NPR)structure was introduced in this paper. The CNPR structure has excellent stiffness, damping and energy absorption performances,and can be applied as spring, damper and energy absorbing components. In this study, the CNPR structure was used as a jounce bumper in vehicle suspension, and the load-displacement curve of NPR jounce bumper was discussed. Moreover, the influences of structural parameters and materials on the load-displacement curve of NPR jounce bumper were specifically researched. It came to the conclusion that only the numbers of cells and layers impact the hardening displacement of NPR jounce bumper. And all parameters significantly affect the structure stiffness at different displacement periods. On the other hand, the load-displacement curve of NPR jounce bumper should be in an ideal region which is difficult to be achieved applying mathematical optimization method. Therefore, a parametric design strategy of NPR jounce bumper was proposed according to the parametric analysis results. The design strategy had two main steps: design of hardening displacement and design of stiffness. The analysis results proved that the proposed method is reliable and is also meaningful for relevant structure design problem. 展开更多
关键词 negative Poisson's ratio AUXETIC parametric design load-displacement curve jounce bumper
原文传递
Model test of negative Poisson’s ratio cable for supporting super-largespan tunnel using excavation compensation method
8
作者 Manchao He Aipeng Guo +4 位作者 Zhifeng Du Songyuan Liu Chun Zhu Shiding Cao Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1355-1369,共15页
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.... In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。 展开更多
关键词 Super-large-span tunnel Excavation compensation method(ECM) NPR(negative Poisson’s ratio)anchor cable Model test
下载PDF
Multi-objective robust design optimization of a novel negative Poisson's ratio bumper system
9
作者 ZHOU Guan ZHAO WanZhong +2 位作者 MA ZhengDong WANG ChunYan LI YuFang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1103-1110,共8页
Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash b... Negative Poisson's ratio(NPR) structure has outstanding performances in lightweight and energy absorption, and it can be widely applied in automotive industries. By combining the front anti-collision beam, crash box and NPR structure, a novel NPR bumper system for improving the crashworthiness is first proposed in the work. The performances of the NPR bumper system are detailed studied by comparing to traditional bumper system and aluminum foam filled bumper system. To achieve the rapid design while considering perturbation induced by parameter uncertainties, a multi-objective robust design optimization method of the NPR bumper system is also proposed. The parametric model of the bumper system is constructed by combining the full parametric model of the traditional bumper system and the parametric model of the NPR structure. Optimal Latin hypercube sampling technique and dual response surface method are combined to construct the surrogate models. The multi-objective robust optimization results of the NPR bumper system are then obtained by applying the multi-objective particle swarm optimization algorithm and six sigma criteria. The results yielded from the optimizations indicate that the energy absorption capacity is improved significantly by the NPR bumper system and its performances are further optimized efficiently by the multi-objective robust design optimization method. 展开更多
关键词 negative Poisson's ratio structure bumper system multi-objective robust design optimization parameterized model crashworthiness
原文传递
Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau 被引量:16
10
作者 ZiQi Zhang Yuan Gao 《Earth and Planetary Physics》 CSCD 2019年第1期69-84,共16页
In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use tele... In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers. 展开更多
关键词 receiver functions SEDIMENTARY layer SOUTHEAST MARGIN of the Tibetan Plateau CRUSTAL thickness poisson's ratio Chuxiong-Simao Basin
下载PDF
Research on Dynamic and Static Test Methods for Evaluating the Poisson's Ratio of Orien ted Strand Board 被引量:1
11
作者 Yuhao Zhou Yuhang He +1 位作者 Zhaoyu Shen Zheng Wang 《Journal of Renewable Materials》 SCIE EI 2022年第12期3459-3476,共18页
In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal ... In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution. 展开更多
关键词 OSB poisson's ratio cantilever plate dynamic test static test
下载PDF
Multidisciplinary Design Optimization of Crash Box with Negative Poisson’s Ratio Structure 被引量:1
12
作者 LU Guangchao SHU Jiahao ZHAO Wanzhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期955-961,共7页
To improve the crashworthiness and energy absorption performance,a novel crash box negative Poisson’s ratio(NPR)structure is proposed according to the characteristics of low speed collision of bumper system.Taking th... To improve the crashworthiness and energy absorption performance,a novel crash box negative Poisson’s ratio(NPR)structure is proposed according to the characteristics of low speed collision of bumper system.Taking the peak collision force and the average collision force as two subsystems,a multidisciplinary collaborative optimization design is carried out,and its optimization results are compared with the ones optimized by NSGA-II algorithm.Simulation results show that the crashworthiness and energy absorption performance of the novel crash box is improved effectively based on the multidisciplinary optimization method. 展开更多
关键词 crash box multidisciplinary optimization negative Poisson’s ratio energy absorption low-speed collision
下载PDF
Upper crustal Poisson's ratio and coda-wave attenuation beneath Eastern Anatolia
13
作者 Ufuk Aydin Sakir Sahin Mohamed K.Salah 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期335-347,共13页
The attenuation of seismic waves reflects the elastic nature of the media within which the waves propagate.In this study,we calculate the Coda-Q(Qc),frequency dependence(η),Vp/Vs and Poisson's(υ)ratios by using ... The attenuation of seismic waves reflects the elastic nature of the media within which the waves propagate.In this study,we calculate the Coda-Q(Qc),frequency dependence(η),Vp/Vs and Poisson's(υ)ratios by using 2621 vertical component seismograms generated by 987 earthquakes recorded by 13 seismic stations in Eastern Anatolia,and creat a 2-D seismic tomographic Qc model for the region.The obtained model provides significant information for exploring the boundaries of adjacent tectonic units within the upper crust and interpreting their dynamic characteristics.The 2-D Qc model and the other parameters are consistent with the seismotectonic features of Eastern Anatolia.Highly heterogeneous Qc values are observed in the study area dividing it into north-south directed bands of low and high attenuation.The highestηvalues were obtained beneath the northwestern and eastern parts of the study region.Clear,high and lowυvalues are obtained in the western and eastern parts of the study area,respectively.The spatial variations in the measured parameters are consistent with many geophysical observations including low Pn velocities,efficient Sn blockage,high heat flow,and widespread volcanism.Different upper crustal thicknesses and inhomogeneous stress distribution along the East and North Anatolian Fault Zones may also contribute to the observed heterogeneities. 展开更多
关键词 Coda-Q(Qc) Eastern Anatolia poisson's ratio(υ) SEISMOTECTONICS upper crustal structure
下载PDF
Study of crustal thickness and poisson's ratio of the south of Erenhot area by teleseismic receiver function
14
作者 Lei Jiang Yonghong Duan +2 位作者 Yanna Zhao Yong Qiu Cheng Li 《Earthquake Science》 CSCD 2018年第4期215-223,共9页
The Xing’an Mongolian Orogenic Belt(XMOB) and the northern margin of North China Craton(NCC) have undergone multistage tectonic superimposition and the tectonic evolution is extremely complicated. We collect the tele... The Xing’an Mongolian Orogenic Belt(XMOB) and the northern margin of North China Craton(NCC) have undergone multistage tectonic superimposition and the tectonic evolution is extremely complicated. We collect the teleseismic data of 44 temporary broadband seismic stations deployed in the XMOB and the northern margin of NCC to calculate the P wave receiver functions. The crustal thickness and average crustal ratio as well as the Poisson’s ratios beneath 33 stations are estimated using the H-κ stacking method. The results show:(1) the crustal thickness of the study area ranges from 38.7 to 42.7 km, with an average thickness of 41.2 km. There is a great difference in crustal thickness on both sides of Solonker suture zone. The characteristics of crustal thickness support the geodynamic model that the Paleo-Asian Ocean subducted and closed at the Solonker suture zone.(2) The Poisson’s ratios in the study area are low, ranging from 0.215 to 0.277, with an average value of 0.243, suggesting that the rock composition of the area is dominated by felsic-acid rocks.(3) There exists a negative correlation between the Poisson’s ratio and the crustal thickness. Combined with the lower values of Poisson’s ratio, we speculate that the delamination is the major mechanism in crustal extension and thinning in the study area. 展开更多
关键词 Xing'an mongolia orogenic belt northern margin of North China Craton receiver function crustal thickness poisson's ratio
下载PDF
A Note on the Effect of Negative Poisson’s Ratio on the Deformation of a Poroelastic Half-Space by Surface Loads
15
作者 Sunita Rani Raman Kumar Sarva Jit Singh 《Engineering(科研)》 2010年第6期432-437,共6页
The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surfa... The aim of this note is to study the effect of negative Poisson’s ratio on the quasi-static deformation of a poroelastic half-space with anisotropic permeability and compressible fluid and solid constituents by surface loads. Two particular cases considered are: two-dimensional normal strip loading and axisymmetric normal disc loading. It is found that a negative Poisson’s ratio makes the Mandel-Cryer effect more prominent. It also results in an increase in the magnitude of the surface settlement. 展开更多
关键词 Anisotropic Permeability AUXETIC Material negative Poisson’s ratio POROELASTIC HALF-SPACE QUASI-STATIC Deformation SURFACE Loading
下载PDF
Path-Dependent Progressive Failure Analysis for 3D-Printed Continuous Carbon Fibre Reinforced Composites
16
作者 Yuan Chen Lin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期84-93,共10页
In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special fun... In order to predict the damage behaviours of 3D-printed continuous carbon fibre(CCF)reinforced composites,when additional short carbon fibre(SCF)composite components are employed for continuous printing or special functionality,a novel path-dependent progressive failure(PDPF)numerical approach is developed.First,a progressive failure model using Hashin failure criteria with continuum damage mechanics to account for the damage initiation and evaluation of 3D-printed CCF reinforced polyamide(PA)composites is developed,based on actual fibre placement trajectories with physical measurements of 3D-printed CCF/PA constituents.Meanwhile,an elastic-plastic model is employed to predict the plastic damage behaviours of SCF/PA parts.Then,the accuracy of the PDPF model was validated so as to study 3D-printed CCF/PA composites with either negative Poisson's ratio or high stiffness.The results demonstrate that the proposed PDPF model can achieve higher prediction accuracies in mechanical properties of these 3D-printed CCF/PA composites.Mechanism analyses show that the stress distribution is generally aggregated in the CCF areas along the fibre placement paths,and the shear damage and matrix tensile/compressive damage are the key damage modes.This study provides a new approach with valuable information for characterising complex 3D-printed continuous fibre-matrix composites with variable mechanical properties and multiple constituents. 展开更多
关键词 3D printing Continuous carbon fibre MODELLING Energy absorption negative poisson's ratio
下载PDF
Mechanical behavior of 2G NPR bolt anchored rock samples under static disturbance loading
17
作者 WANG Jiong JIANG Jian +4 位作者 WANG Siyu CHANG Yiwen LIU Peng HE Manchao CHENG Shuang 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2494-2516,共23页
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar... The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt. 展开更多
关键词 Anchored rock samples Static disturbance load Acoustic emission characteristics Digital speckle negative poisson's ratio
下载PDF
Experimental crushing behavior and energy absorption of angular gradient honeycomb structures under quasi-static and dynamic compression
18
作者 Jiachen Li Yuchen Wei +2 位作者 Hao Wu Xingyu Shen Mengqi Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期47-63,共17页
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and... The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments. 展开更多
关键词 negative poisson's ratio Gradient honeycomb structure Quasi-static compression Dynamic impact Titanium alloy
下载PDF
开挖补偿法防控深部地下岩爆灾害——引汉济渭工程秦岭输水隧洞案例分析 被引量:1
19
作者 Jie Hu Manchao He +4 位作者 Hongru Li Zhigang Tao Dongqiao Liu Tai Cheng Di Peng 《Engineering》 SCIE EI CAS CSCD 2024年第3期154-163,共10页
Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control... Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway. 展开更多
关键词 ROCKBURST Excavation compensation method Pre-stressed support negative Poisson’s ratio bolt Tunnel boring machine
下载PDF
Energy Absorption by 3D-Printed Mesh Structures with a Negative Poisson’s Ratio
20
作者 Wenyu Li Weiming Yang +5 位作者 Mingze Li Xiang Zhang Ping Zhang Yucheng Zhao Peijian Chen Haishun Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第1期205-212,共8页
A negative Poisson's ratio(NPR)structure represents optimal impact-resistance with applications in various fields,including the crash box in vehicles,which absorbs impact kinetic energy.The crash box is designed t... A negative Poisson's ratio(NPR)structure represents optimal impact-resistance with applications in various fields,including the crash box in vehicles,which absorbs impact kinetic energy.The crash box is designed to deform in response to impact,increasing local structural density,which enhances impact resistance performance.Current studies have only focused on the NPR effect in the plane dimension at low-speed loads.Few studies have considered high-speed impact loads on three-dimensional NPR structures.We have developed two types of AlSi10Mg alloy energy-absorbing structures with NPR using three-dimensional printing technology,and have compared our systems with a conventional hexagonal mesh structure.Sample testing involved split-Hopkinson pressure bar measurements,which showed good agreement with dynamic numerical simulations.When subjected to an impact load,the NPR structure exhibited better impact resistance and energy absorption compared with the positive Poisson's ratio structure.The proposed dual-layer hexagonal structure ensures an NPR effect while exhibiting higher strength and improved stability relative to the conventional concave hexagon structure. 展开更多
关键词 negative Poisson’s ratio Energy absorption 3D printing Split-Hopkinson pressure bar Numerical simulation
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部