期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Negative differential resistance effects induced by protonation in naphthalocyanine molecular junctions
1
作者 CHEN Yiming ZHAO Wanzhu +3 位作者 ZHANG Baiyang WU Kangle BIAN Jiangyu CHANG Yingfei 《分子科学学报》 CAS 2024年第4期358-362,共5页
The electronic and transport characteristics of protonated derivatives of naphthalocyanine(Nc)were investigated using density functional theory and non-equilibrium Green's functions.The results indicate that the p... The electronic and transport characteristics of protonated derivatives of naphthalocyanine(Nc)were investigated using density functional theory and non-equilibrium Green's functions.The results indicate that the protonation of external meso-N atoms of Nc preserves its planar structure and is energetically more favorable than the protonation of internal isoindole-N atoms.The protonation shifts the energy levels of system's frontier molecular orbitals closer to the Fermi level,thus creating channels for electron transport.In contrast with the semiconductor transport properties of H2Nc,its protonation products respond more sensitively to bias and exhibit negative differential resistance phenomena at specific bias. 展开更多
关键词 protonation reaction electronic structure transport property NAPHTHALOCYANINE negative differential resistance effect
原文传递
Two-dimensional tetragonal ZnB: A nodalline semimetal with good transport properties
2
作者 赵永春 朱铭鑫 +1 位作者 李胜世 李萍 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期529-536,共8页
Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin... Nodal-line semimetals have become a research hot-spot due to their novel properties and great potential application in spin electronics. It is more challenging to find 2D nodal-line semimetals that can resist the spin–orbit coupling(SOC)effect. Here, we predict that 2D tetragonal Zn B is a nodal-line semimetal with great transport properties. There are two crossing bands centered on the S point at the Fermi surface without SOC, which are mainly composed of the pxy orbitals of Zn and B atoms and the pz orbitals of the B atom. Therefore, the system presents a nodal line centered on the S point in its Brillouin zone(BZ). And the nodal line is protected by the horizontal mirror symmetry M_(z). We further examine the robustness of a nodal line under biaxial strain by applying up to-4% in-plane compressive strain and 5% tensile strain on the Zn B monolayer, respectively. The transmission along the a direction is significantly stronger than that along the b direction in the conductive channel. The current in the a direction is as high as 26.63 μA at 0.8 V, and that in the b direction reaches 8.68 μA at 0.8 V. It is interesting that the transport characteristics of Zn B show the negative differential resistance(NDR) effect after 0.8 V along the a(b) direction. The results provide an ideal platform for research of fundamental physics of 2D nodal-line fermions and nanoscale spintronics, as well as the design of new quantum devices. 展开更多
关键词 nodal-line semimetals negative differential resistance(NDR)effect horizontal mirror symmetry
下载PDF
Tunneling field effect transistors based on in-plane and vertical layered phosphorus heterostructures
3
作者 冯申艳 张巧璇 +2 位作者 杨洁 雷鸣 屈贺如歌 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期421-427,共7页
Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low... Tunneling field effect transistors(TFETs) based on two-dimensional materials are promising contenders to the traditional metal oxide semiconductor field effect transistor, mainly due to potential applications in low power devices. Here,we investigate the TFETs based on two different integration types: in-plane and vertical heterostructures composed of two kinds of layered phosphorous(β-P and δ-P) by ab initio quantum transport simulations. NDR effects have been observed in both in-plane and vertical heterostructures, and the effects become significant with the highest peak-to-valley ratio(PVR)when the intrinsic region length is near zero. Compared with the in-plane TFET based on β-P and δ-P, better performance with a higher on/off current ratio of - 10-6 and a steeper subthreshold swing(SS) of - 23 mV/dec is achieved in the vertical TFET. Such differences in the NDR effects, on/off current ratio and SS are attributed to the distinct interaction nature of theβ-P and δ-P layers in the in-plane and vertical heterostructures. 展开更多
关键词 tunneling field effect transistors negative differential resistance effect on/off current ratio subthreshold swing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部