We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and o...We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and obtain the essential simulation parameters. Then based on the physical model of pipeline and by introducing leakage boundary condition, we simulate the variation of pressure and flow rate in pipeline after leakage, the influence of leakage scale and leakage position on the pressure and flow rate in the pipeline. The results show that the leakage scale mainly influences the amplitude of negative pressure wave, and that the leakage position inflnenees both the amplitude and the shape of the curves of negative pressure wave.展开更多
Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence...Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence of negative pressure waves and the unsupervised learning of pattern recognition, the Interactive Self-organizing Data Analysis Technique Algorithm (ISODATA) method was used to classify the negative pressure waves and then the states of pipelines could be determined. K L transformation was used to eliminate the correlativity of feature parameters and to reduce the dimensionality of feature vector space to speed up calculation. Experimental results validated the accuracy and practical value of this method.展开更多
Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil...Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil stolen every year results in huge economic losses on oilfield. Therefore, a real-time and accurate pipeline leak detection and location system not only can effectively decrease leakage loss and reduce the waste of manpower and material resources in patrolling work, but also is conductive to the management of oil pipeline and improvement of economic efficiency of enterprise. The paper determines leak detection and location project giving priority to negative pressure wave and supplemented by flow parameter analysis. The method not only can judge the accidence of leakage timely and accurately, but also can effectively avoid leakage false alarm caused by start or stop pumps in pipeline.展开更多
文摘We conduct simulation study on the typical influencing factors for negative pressure wave in liquid pipeline leakage. We first analyse the liquid pipeline leakage detection based on negative pressure wave method and obtain the essential simulation parameters. Then based on the physical model of pipeline and by introducing leakage boundary condition, we simulate the variation of pressure and flow rate in pipeline after leakage, the influence of leakage scale and leakage position on the pressure and flow rate in the pipeline. The results show that the leakage scale mainly influences the amplitude of negative pressure wave, and that the leakage position inflnenees both the amplitude and the shape of the curves of negative pressure wave.
基金supported,by National Natural Science Foundation of China(Program number:50105015,50375103)Program for New Century Excellent Talents in University(Program number:NCET-05-0110)+2 种基金Fok Ying Tung Education Foundation(Program number:91051)Beijing Nova Program(Program number:2003B33)CNPC Innovation Fund.
文摘Increasingly serious leak problem in pipeline transportation has not only affected the operation of pipelines but also caused loss of precious resource and environmental damage. Based on the analysis of the occurrence of negative pressure waves and the unsupervised learning of pattern recognition, the Interactive Self-organizing Data Analysis Technique Algorithm (ISODATA) method was used to classify the negative pressure waves and then the states of pipelines could be determined. K L transformation was used to eliminate the correlativity of feature parameters and to reduce the dimensionality of feature vector space to speed up calculation. Experimental results validated the accuracy and practical value of this method.
文摘Because pipeline has large pipe diameter, large throughout and high pressure, once pipeline leakage accident happens, the damage is quite serious. In addition, pipeline leakage accident caused by man-made drilling oil stolen every year results in huge economic losses on oilfield. Therefore, a real-time and accurate pipeline leak detection and location system not only can effectively decrease leakage loss and reduce the waste of manpower and material resources in patrolling work, but also is conductive to the management of oil pipeline and improvement of economic efficiency of enterprise. The paper determines leak detection and location project giving priority to negative pressure wave and supplemented by flow parameter analysis. The method not only can judge the accidence of leakage timely and accurately, but also can effectively avoid leakage false alarm caused by start or stop pumps in pipeline.